精英家教網 > 初中數學 > 題目詳情

【題目】九年級(3)班數學興趣小組經過市場調查整理出某種商品在第x天(1≤x≤90,且x為整數)的售價與銷售量的相關信息如下.已知商品的進價為30元/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

(1)求出w與x的函數關系式;

(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;

(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結果.

【答案】(1)w=;(2)銷售第45天時,當天獲得的銷售利潤最大,最大利潤是6050元;(3)該商品在銷售過程中,共有24天每天的銷售利潤不低于5600元.

【解析】

試題分析:(1)當0≤x≤50時,設商品的售價y與時間x的函數關系式為y=kx+b,由點的坐標利用待定系數法即可求出此時y關于x的函數關系式,根據圖形可得出當50<x≤90時,y=90.再結合給定表格,設每天的銷售量p與時間x的函數關系式為p=mx+n,套入數據利用待定系數法即可求出p關于x的函數關系式,根據銷售利潤=單件利潤×銷售數量即可得出w關于x的函數關系式;(2)根據w關于x的函數關系式,分段考慮其最值問題.當0≤x≤50時,結合二次函數的性質即可求出在此范圍內w的最大值;當50<x≤90時,根據一次函數的性質即可求出在此范圍內w的最大值,兩個最大值作比較即可得出結論;(3)令w≥5600,可得出關于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范圍,由此即可得出結論.

試題解析:(1)當0≤x≤50時,設商品的售價y與時間x的函數關系式為y=kx+b(k、b為常數且k≠0),

∵y=kx+b經過點(0,40)、(50,90),

,解得:

∴售價y與時間x的函數關系式為y=x+40;

當50<x≤90時,y=90.

∴售價y與時間x的函數關系式為y=

由書記可知每天的銷售量p與時間x成一次函數關系,

設每天的銷售量p與時間x的函數關系式為p=mx+n(m、n為常數,且m≠0),

∵p=mx+n過點(60,80)、(30,140),

,解得:,

∴p=﹣2x+200(0≤x≤90,且x為整數),

當0≤x≤50時,w=(y﹣30)p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;

當50<x≤90時,w=(90﹣30)(﹣2x+200)=﹣120x+12000.

綜上所示,每天的銷售利潤w與時間x的函數關系式是w=

(2)當0≤x≤50時,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,

∵a=﹣2<0且0≤x≤50,

∴當x=45時,w取最大值,最大值為6050元.

當50<x≤90時,w=﹣120x+12000,

∵k=﹣120<0,w隨x增大而減小,

∴當x=50時,w取最大值,最大值為6000元.

∵6050>6000,

∴當x=45時,w最大,最大值為6050元.

即銷售第45天時,當天獲得的銷售利潤最大,最大利潤是6050元.

(3)當0≤x≤50時,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,

解得:30≤x≤50,

50﹣30+1=21(天);

當50<x≤90時,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,

解得:50<x≤53,

∵x為整數,

∴50<x≤53,

53﹣50=3(天).

綜上可知:21+3=24(天),

故該商品在銷售過程中,共有24天每天的銷售利潤不低于5600元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】將拋物線y=4x2向右平移1個單位,再向上平移3個單位,得到的拋物線是(
A.y=4(x+1)2+3
B.y=4(x﹣1)2+3
C.y=4(x+1)2﹣3
D.y=4(x﹣1)2﹣3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形具有而菱形不一定具有的性質是( ).

A. 對角線互相垂直 B. 對角線互相平分

C. 對角線相等 D. 對角線平分一組對角

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算a2+3a2,結果正確的是( 。

A. 3a4 B. 3a2 C. 4a2 D. 4a4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ΔABC中,∠ABC的平分線與在∠ACE的平分線相交于點D.

(1)若∠ABC=60°,ACB=40°,求∠A和∠D的度數.

(2)由(1)小題的計算結果,猜想,∠A和∠D有什么數量關系,并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:Rt△ACB,BC=3,AC=4,延長BC至D,使得△ABD為等腰三角形,求CD的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在某次測試后,班里有兩位同學議論他們小組的數學成績,小明說:我們組考87分的人最多,小華說:我們組7位同學成績排在最中間的恰好也是87.上面兩位同學的話能反映出的統(tǒng)計量( 。

A.眾數和平均數B.平均數和中位數C.眾數和中位數D.眾數和方差

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為幫助災區(qū)人民重建家園,某校學生積極捐款.已知第一次捐款總額為9000元,第二次捐款總額為12000元,兩次人均捐款額相等,但第二次捐款人數比第一次多50人.求該校第二次捐款的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在ABC中,BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側,BDAE于點D,CEAE于點E

(1)求證:BD=DE+CE;

(2)若直線AE繞點A旋轉到圖2位置時(BD<CE),其余條件不變,問BD與DE,CE的關系如何,請證明;

(3)若直線AE繞點A旋轉到圖3時(BD>CE),其余條件不變,BD與DE,CE的關系怎樣?請直接寫出結果,不須證明

查看答案和解析>>

同步練習冊答案