【題目】(1)如圖1,在△ABC中,∠ACB是直角,∠ABC=60°,AD、CE、BF分別是∠BAC、∠BCA、∠ABC的平分線,AD、CE、BF相交于點(diǎn)F.
①請(qǐng)求出∠AFC的度數(shù)并說(shuō)明理由;
②請(qǐng)你判斷FE與FD之間的數(shù)量關(guān)系并說(shuō)明理由。
(2)如圖2,在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,請(qǐng)判斷線段AE、CD、AC之間的數(shù)量關(guān)系并說(shuō)明理由。
【答案】(1)①120;②EF=DF;理由見(jiàn)解析(2)AE+CD=AC,理由見(jiàn)解析
【解析】
(1)①根據(jù)三角形內(nèi)角和及外角的性質(zhì)求出∠FAC,∠ACF即可解決問(wèn)題;
②根據(jù)圖(1)的作法,在AC上截取CG=CD,證得△CFG≌△CFD(SAS),得出DF=GF;再根據(jù)ASA證明△AFG≌△AFE,得EF=FG,故得出EF=FD;
(2)根據(jù)圖(1)的作法,在AC上截取AG=AE,證得△EAF≌△GAF(SAS),得出∠EFA=∠GFA;再根據(jù)ASA證明△FDC≌△FGC,得CD=CG即可解決問(wèn)題.
(1)①∵∠ACB=90°,∠ABC=60°,
∴∠BAC=90°-60°=30°,
∵AD、CE分別是∠BAC、∠BCA的平分線,
∴∠FAC=15°,∠FCA=45°,
∴∠AFC=180°-(∠FAC+∠ACF)=120°
故答案為:120°;
②FE與FD之間的數(shù)量關(guān)系為:DF=EF.
理由:如圖2,在AC上截取CG=CD,
∵CE是∠BCA的平分線,
∴∠DCF=∠GCF,
在△CFG和△CFD中,
,
∴△CFG≌△CFD(SAS),
∴DF=GF.
∵∠ABC=60°,AD、CE分別是∠BAC、∠BCA的平分線,
∴∠FAC=∠BAC,∠FCA=∠ACB,且∠EAF=∠GAF,
∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°-∠B)=60°,
∴∠AFC=120°,
∴∠CFD=60°=∠CFG,
∴∠AFG=60°,
又∵∠AFE=∠CFD=60°,
∴∠AFE=∠AFG,
在△AFG和△AFE中,
,
∴△AFG≌△AFE(ASA),
∴EF=GF,
∴DF=EF;
(2)結(jié)論:AC=AE+CD.
理由:如圖3,在AC上截取AG=AE,
同(1)可得,△EAF≌△GAF(SAS),
∴∠EFA=∠GFA.
又由題可知,∠FAC=∠BAC,∠FCA=∠ACB,
∴∠FAC+∠FCA=(∠BAC+∠ACB)=(180°-∠B)=60°,
∴∠AFC=180°-(∠FAC+∠FCA)=120°,
∴∠EFA=∠GFA=180°-120°=60°=∠DFC,
∴∠CFG=∠CFD=60°,
同(1)可得,△FDC≌△FGC(ASA),
∴CD=CG,
∴AC=AG+CG=AE+CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3,…,組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2019秒時(shí),點(diǎn)P的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且OD=1.25.
(1)求直線AC的解析式.
(2)在y軸上是否存在點(diǎn)P,直線PD與矩形對(duì)角線AC交于點(diǎn)M,使得△DMC為等腰三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)拋物線y=﹣x2經(jīng)過(guò)怎樣平移,才能使得平移后的拋物線過(guò)點(diǎn)D和點(diǎn)E(點(diǎn)E在y軸正半軸上),且△ODE沿DE折疊后點(diǎn)O落在邊AB上O′處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC和△DEF(它們均為銳角三角形)中,AC=DF,AB=DE.
(1)用尺規(guī)在圖中分別作出AB、DE邊上的高CG、FH(不要寫(xiě)作法,保留作圖痕跡).
(2)如果CG=FH,猜測(cè)△ABC和△DEF是否全等,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批乒乓球的質(zhì)量檢驗(yàn)結(jié)果如下:
(1)畫(huà)出這批乒乓球“優(yōu)等品”頻率的折線統(tǒng)計(jì)圖;
(2)這批乒乓球“優(yōu)等品”的概率的估計(jì)值是多少?
(3)從這批乒乓球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除顏色外都相同,將它們放入一個(gè)不透明的袋中.
①求從袋中摸出一個(gè)球是黃球的概率;
②現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個(gè)是黃球的概率不小于,問(wèn)至少取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AB∥CD,E在直線AB上,且EF⊥EG,EF交直線CD于點(diǎn)M.EG交直線CD于點(diǎn)N.
(1)若∠1=34°,求∠2的度數(shù);(2)若∠2=2∠1,直接寫(xiě)出圖中等于4∠1的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關(guān)系并證明;
(2)求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展課外體育活動(dòng),決定開(kāi)展:籃球、乒乓球、踢毽子、跑步四種活動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種).隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題.
(1)樣本中最喜歡籃球項(xiàng)目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是 度;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有學(xué)生1000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com