【題目】在平面坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,………按這樣的規(guī)律進行下去,正方形A2018B2018C2018C2017的面積為( )
A. B. C. D.
【答案】C
【解析】試題分析:∵點A的坐標為(1,0),點D的坐標為(0,2),
∴OA=1,OD=2,
設(shè)正方形的面積分別為S1,S2…S2019,
在直角△ADO中,根據(jù)勾股定理,
得:AD==,
∴AB=AD=BC=,
∴正方形ABCD的面積為:S1=5;
∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠AOD=∠ABA1=90°,
∴△AOD∽△ABA1,
∴,
即,
∴BA1=,
∴A1C=BC+ BA1=,
∴正方形A1B1C1C的面積為:S2=×5=5×,
根據(jù)題意,得:AD∥BC∥C1A2∥C2B2,
∴∠BAA1=∠B1A1A2=∠B2A2x,
∵∠ABA1=∠A1B1A2=90°,
∴△BAA1∽△B1A1A2,
∴,
∴A2B1==,
∴A2C1=B1C1+A2B1=+=,
∴正方形A2B2C2C1的面積為:S3=×5=5×,
由此可得:Sn=5×,
∴正方形A2018B2018C2018C2017的面積為S2019=5×=5×.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】已知兩個等腰Rt△ABC,Rt△CEF有公共頂點C,∠ABC﹣∠CEF=90°,連接AF,M是AF的中點
(1)如圖1,當CB與CE在同一直線上時,連接CM,若CB=1,CE=2,求CM的長.
(2)如圖2,連接MB,ME,當∠BCE=45°時,求證:BM=ME.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形ABC的三邊長分別為6 cm、7.5 cm、9 cm,三角形DEF的一邊長為4 cm.當三角形DEF的另兩邊長是下列哪一組時,這兩個三角形相似( )
A. 2 cm、3 cm B. 4 cm、5 cm C. 5 cm、6 cm D. 6 cm、7 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,馬戲團讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為1.2米.
(1)若吊環(huán)高度為2米,支點 A為蹺蹺板 PQ的中點,獅子能否將公雞送到吊環(huán)上?為什么?
(2)若吊環(huán)高度為3.6米,在不改變其他條件的前提下移動支柱,當支點 A移到蹺蹺板 PQ的什么位置時,獅子剛好能將公雞送到吊環(huán)上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知EF//AD, ∠1=∠2, ∠BAC=70°.求∠AGD的度數(shù)(將以下過程填寫完整)
解:∵EF//AD
∴∠2=
又∵∠1=∠2
∴∠1=∠3
∴ AB//
∴∠BAC+ =180°.
又∵∠BAC=70°
∴∠AGD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E.
(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若BE=4,DE=8,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com