【題目】如圖,下面四種說法:①面積最大的是亞洲;②南美洲、北美洲、歐洲約占總面積的50%;③非洲約占全球面積的;④南美洲的面積約是大洋洲面積的2倍,其中正確的說法有( )
A. ①② B. ①②③④ C. ①④ D. ①③④
【答案】D
【解析】
根據(jù)統(tǒng)計(jì)圖中所給出的信息和相應(yīng)的數(shù)據(jù),分別進(jìn)行分析即可.
①亞洲的面積占陸地總面積的29.5%,占的最多,則七大洲中面積最大的是亞洲,故本選項(xiàng)正確;
②南美洲、北美洲、非洲三大洲的面積的和是:12.1%+16.1%+20.5%=48.7%≈50%,則南美洲、北美洲、非洲三大洲的面積和約占陸地總面積的50%,約占陸地總面積的50%正確;
③非洲約占陸地總面積的20%,正確;
④南美洲的面積占陸地總面積的12%,大洋洲面積占陸地總面積的6%,則南美洲的面積是大洋洲面積的2倍,正確;
四個(gè)結(jié)論中正確的應(yīng)該是①②③④;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師舉了下面的例題:
例 1 等腰三角形 ABC 中,∠A=110°,求∠B 的度數(shù).
例 2 等腰三角形 ABC 中,∠A=40°,求∠B 的度數(shù).
張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:變式等腰三角形 ABC 中,∠A=70°,求∠B 的度數(shù).
(1)請(qǐng)你解答以上的變式題.
(2)在等腰三角形 ABC 中,設(shè)∠A=x°,請(qǐng)用 x°表示出∠B 的度數(shù);
(3)結(jié)合(1)(2),小敏發(fā)現(xiàn),∠A 的度數(shù)不同,得到∠B 的度數(shù)的個(gè)數(shù)也可能不同,當(dāng)∠B 有三種情況三個(gè)不同的度數(shù)時(shí),討論此時(shí) x 的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠1=∠2,∠3=∠4.
(1)求證:AD∥BE;
(2)若∠B=∠3=2∠2,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),B(0,﹣ ),C(2,0),其對(duì)稱軸與x軸交于點(diǎn)D
(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)
①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個(gè);
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,第(1)個(gè)圖形中有2個(gè)黑色正方形,第(2)個(gè)圖形中有3個(gè)黑色正方形,第(3)個(gè)圖形中有5個(gè)黑色正方形,……,根據(jù)圖形變化的規(guī)律,第(101)個(gè)圖形中黑色正方形有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某軟件科技公司20人負(fù)責(zé)研發(fā)與維護(hù)游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護(hù)人數(shù)的扇形統(tǒng)計(jì)圖和利潤的條形統(tǒng)計(jì)圖.
根據(jù)以上信息,網(wǎng)答下列問題
(1)直接寫出圖中a,m的值;
(2)分別求網(wǎng)購與視頻軟件的人均利潤;
(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護(hù)人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一束光線在兩面玻璃墻內(nèi)進(jìn)行傳播,路徑為A→B→C→D,根據(jù)光的反射性質(zhì),∠1=∠2,∠3=∠4,若∠2+∠3=90°,試探究直線AB與CD是否平行?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技有限公司準(zhǔn)備購進(jìn)A和B兩種機(jī)器人來搬運(yùn)化工材料,已知購進(jìn)A種機(jī)器人2個(gè)和B種機(jī)器人3個(gè)共需16萬元,購進(jìn)A種機(jī)器人3個(gè)和B種機(jī)器人2個(gè)共需14萬元,請(qǐng)解答下列問題:
(1)求A、B兩種機(jī)器人每個(gè)的進(jìn)價(jià);
(2)已知該公司購買B種機(jī)器人的個(gè)數(shù)比購買A種機(jī)器人的個(gè)數(shù)的2倍多4個(gè),如果需要購買A、B兩種機(jī)器人的總個(gè)數(shù)不少于28個(gè),且該公司購買的A、B兩種機(jī)器人的總費(fèi)用不超過106萬元,那么該公司有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中,裝有2個(gè)紅球和1個(gè)白球,這些球除了顏色外都相同.如果第一次隨機(jī)摸出一個(gè)小球(不放回),充分?jǐn)噭蚝,第二次再從剩余的兩球中隨機(jī)摸出一個(gè)小球,求兩次都摸到紅球的概率.(用樹狀圖或列表法求解)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com