【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC//x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】
(1)
解:∵點(diǎn)A(0,1).B(﹣9,10)在拋物線上,
∴ ,
∴ ,
∴拋物線的解析式為y= x2+2x+1
(2)
解:∵AC//x軸,A(0,1)
∴ x2+2x+1=1,
∴x1=﹣6,x2=0,
∴點(diǎn)C的坐標(biāo)(﹣6,1),
∵點(diǎn)A(0,1).B(﹣9,10),
∴直線AB的解析式為y=﹣x+1,
設(shè)點(diǎn)P(m, m2+2m+1)
∴E(m,﹣m+1)
∴PE=﹣m+1﹣( m2+2m+1)=﹣ m2﹣3m,
∵AC⊥EP,AC=6,
∴S四邊形AECP
=S△AEC+S△APC
= AC×EF+ AC×PF
= AC×(EF+PF)
= AC×PE
= ×6×(﹣ m2﹣3m)
=﹣m2﹣9m
=﹣(m+ )2+ ,
∵﹣6<m<0
∴當(dāng)m=﹣ 時(shí),四邊形AECP的面積的最大值是 ,
此時(shí)點(diǎn)P(﹣ ,﹣ )
(3)
解:∵y= x2+2x+1= (x+3)2﹣2,
∴P(﹣3,﹣2),
∴PF=yF﹣yP=3,CF=xF﹣xC=3,
∴PF=CF,
∴∠PCF=45°
同理可得:∠EAF=45°,
∴∠PCF=∠EAF,
∴在直線AC上存在滿足條件的Q,
設(shè)Q(t,1)且AB=9 ,AC=6,CP=3
∵以C、P、Q為頂點(diǎn)的三角形與△ABC相似,
①當(dāng)△CPQ∽△ABC時(shí),
∴ ,
∴ ,
∴t=﹣4或t=﹣8(不符合題意,舍)
∴Q(﹣4,1)
②當(dāng)△CQP∽△ABC時(shí),
∴ ,
∴ ,
∴t=3或t=﹣15(不符合題意,舍)
∴Q(3,1)
【解析】(1)用待定系數(shù)法求出拋物線解析式即可;(2)設(shè)點(diǎn)P(m, m2+2m+1),表示出PE=﹣ m2﹣3m,再用S四邊形AECP=S△AEC+S△APC= AC×PE,建立函數(shù)關(guān)系式,求出極值即可;(3)先判斷出PF=CF,再得到∠PCA=∠EAC,以C、P、Q為頂點(diǎn)的三角形與△ABC相似,分兩種情況計(jì)算即可.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的應(yīng)用,掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是半徑為1的⊙O的直徑,點(diǎn)A在⊙O上,∠AMN=30°,點(diǎn)B為劣弧AN的中點(diǎn).P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )
A.
B.1
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交點(diǎn)為A(﹣3,0),與y軸交點(diǎn)為B,且與正比例函數(shù)y=x的圖象交于點(diǎn)C(m,4).
(1)求m的值及一次函數(shù)y=kx+b的表達(dá)式;
(2)觀察函數(shù)圖象,直接寫出關(guān)于x的不等式x<kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是( 。
A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2 ,則陰影部分圖形的面積為( )
A.4π
B.2π
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并理解下面的證明過程,并在每步后的括號(hào)內(nèi)填寫該步推理的依據(jù).
已知:如圖,AM,BN,CP是△ABC的三條角平分線.
求證:AM、BN、CP交于一點(diǎn).
證明:如圖,設(shè)AM,BN交于點(diǎn)O,過點(diǎn)O分別作OD⊥BC,OF⊥AB,垂足分別為點(diǎn)D,E,F(xiàn).
∵O是∠BAC角平分線AM上的一點(diǎn)( ),
∴OE=OF( ).
同理,OD=OF.
∴OD=OE( ).
∵CP是∠ACB的平分線( ),
∴O在CP上( ).
因此,AM,BN,CP交于一點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場(chǎng) | 乙林場(chǎng) | ||
購樹苗數(shù)量 | 銷售單價(jià) | 購樹苗數(shù)量 | 銷售單價(jià) |
不超過1000棵時(shí) | 4元/棵 | 不超過2000棵時(shí) | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設(shè)購買白楊樹苗x棵,到兩家林場(chǎng)購買所需費(fèi)用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場(chǎng)購買所需費(fèi)用為元,若都在乙林場(chǎng)購買所需費(fèi)用為元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車間同時(shí)開始加工一批零件,從開始加工到加工完這批零件,甲車間工作了9小時(shí),乙車間在中途停工一段時(shí)間維修設(shè)備,修好后馬上按停工前的工作效率繼續(xù)加工,直到與甲車間同時(shí)完成這批零件的加工任務(wù)為止,設(shè)甲、乙兩車間各自加工零件的數(shù)量為y(個(gè)),甲車間加工的時(shí)間為x(時(shí)),y與x之間的函數(shù)圖象如圖所示,下列說法其中正確的個(gè)數(shù)為( )
①這批零件的總個(gè)數(shù)為1260個(gè);
②甲車間每小時(shí)加工零件個(gè)數(shù)為80個(gè);
③乙車間維修設(shè)備后,乙車間加工零件數(shù)量y與x之間的函數(shù)關(guān)系式y=60x﹣120;
④乙車間維修設(shè)備用了2個(gè)小時(shí)
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com