【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,按要求畫出A1B1C1A2B2C2;

(1)O為位似中心,在點O的同側(cè)作A1B1C1,使得它與原三角形的位似比為12

(2)ABC繞點O順時針旋轉(zhuǎn)90°得到A2B2C2,并求出點A旋轉(zhuǎn)的路徑的長.

【答案】1)見解析;(2π.

【解析】

1)連接三角形各頂點與位似中心得線段AO,BO,CO,再將其減半,可得A1B1,C1點,再連接各點即得△A1B1C1,(2)將連接的線段AO,BO,CO,繞點O順時針旋轉(zhuǎn)90°得到A2O,B2O,C2O,再連接各點即可,根據(jù)方格求出OA的長,再利用弧長公式求出A旋轉(zhuǎn)的路徑的長.

解 (1)如圖所示:

(2)如圖所示:

OA,

∴點A運動的路徑為弧AA2的長=π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點BC、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點CD之間的距離是10厘米,張角∠CAB60°.

(1)求支點D到滑軌MN的距離(精確到1厘米);

(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即ACAC′,BCBC)當(dāng)張角∠CA'B45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.73,2.45,2.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:選用同一長度單位量得兩條線段的長度分別是,,那么就說兩條線段的比

,如果把表示成比值,那么,或.請完成以下問題:

四條線段,,中,如果________,那么這四條線段,,,叫做成比例線段.

已知,那么________,________

如果,那么成立嗎?請用兩種方法說明其中的理由.

如果,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個正方形HIJK,使得點H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時他發(fā)現(xiàn)可以將正方形HIJK通過放大或縮小得到滿足要求的正方形DEFG.

閱讀以上材料,回答小明接下來研究的以下問題:

(1)如圖2,給定銳角三角形ABC,畫出所有長寬比為21的長方形DEFG,使D,E位于邊BC上,FG分別位于邊AC,AB上.

(2)已知三角形ABC的面積為36,BC12,在第(1)問的條件下,求長方形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°BC16 cm,AC12 cm,點P從點B出發(fā),沿BC2 cm/s的速度向點C移動,點Q從點C出發(fā),以1 cm/s的速度向點A移動,若點P、Q分別從點BC同時出發(fā),設(shè)運動時間為ts,當(dāng)t__________時,CPQCBA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,23,根據(jù)圖中數(shù)據(jù)完成填空,再按要求答題:sin2A1sin2B1=____;sin2A2sin2B2=____sin2A3sin2B3=____.

(1)觀察上述等式,猜想:在RtABC中,∠C=90°,都有sin2Asin2B=____;

(2)如圖4,在RtABC中,∠C=90°,∠A,∠B,∠C的對邊分別是ab,c,利用三角函數(shù)的定義和勾股定理證明你的猜想;

(3)已知∠A+∠B=90°,且sinA=,求sinB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD交于點E,BAC=90°,CED=45°,DCE=30°,DE=,BE=.求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E為CD的中點,AE的垂直平分線分別交AD,BC及AB的延長線于點F,G,H,連接HE,HC,OD,連接CO并延長交AD于點M.則下列結(jié)論中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正確結(jié)論的個數(shù)有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了提高學(xué)生的消防意識,舉行了消防知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:

1)這次知識競賽共有多少名學(xué)生?

2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;

3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.

查看答案和解析>>

同步練習(xí)冊答案