【題目】某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據圖中所經信息解答下列問題:
(1)這次知識競賽共有多少名學生?
(2)“二等獎”對應的扇形圓心角度數,并將條形統(tǒng)計圖補充完整;
(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.
科目:初中數學 來源: 題型:
【題目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在邊AC上取一點D,使得BD=CD,點E、F分別是線段BC、BD的中點,連接AF和EF,作∠FEM=∠FDC,交AC于點M,如圖1所示.
(1)請判斷四邊形EFDM是什么特殊的四邊形,并證明你的結論;
(2)將∠FEM繞點E順時針旋轉到∠GEN,交線段AF于點G,交AC于點N,如圖2所示,請證明:EG=EN;
(3)在第(2)條件下,若點G是AF中點,且∠C=30°,AB=3,如圖3,求GE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,,,,AD、BE相交于點M,連接CM.
求證:;
求的度數用含的式子表示;
如圖2,當時,點P、Q分別為AD、BE的中點,分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,,,.
如圖①,將線段繞點順時針旋轉,所得到與交于點,則的長________;
如圖②,點是邊上一點且,將線段繞點旋轉,得線段,點始終為的中點,則將線段繞點逆時針旋轉________度時,線段的長最大,最大值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖2211拋物線y=ax2+2ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)拋物線線上是否存在一點P,使,若存在,請求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在中,,以為直徑作分別交,于點,,連接和,過點作,垂足為,交于點.
(1)求證:;
(2)若,求線段的長;
(3)在的條件下,求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE⊥AC于點E,BE與CD交于點F。
(1)求證:△ACD≌△FBD。
(2)若AB=5,AD=1,求BF的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,有一拋物線,與軸交于點、點,現將背面完全相同,正面分別標有數、、、的張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數作為點的橫坐標,將該數的平方作為點的縱坐標,則點落在拋物線與軸圍成的區(qū)域內(含邊界)的概率為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com