【題目】經(jīng)過三邊都不相等的三角形的一個頂點的線段把三角形分成兩個小三角形,如果其中一個是等腰三角形,另外一個三角形和原三角形相似,那么把這條線段定義為原三角形的“和諧分割線”.如圖,線段CD是△ABC的“和諧分割線”,△ACD為等腰三角形,△CBD和△ABC相似,∠A=46°,則∠ACB的度數(shù)為

【答案】113°或92°
【解析】解:∵△BCD∽△BAC, ∴∠BCD=∠A=46°,
∵△ACD是等腰三角形,∵∠ADC>∠BCD,
∴∠ADC>∠A,即AC≠CD,①當AC=AD時,∠ACD=∠ADC= (180°﹣46°)=67°,
∴∠ACB=67°+46°=113°,②當DA=DC時,∠ACD=∠A=46°,
∴∠ACB=46°+46°=92°,
故答案為113°或92°.

由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分兩種情形討論①當AC=AD時,②當DA=DC時,分別求解即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】
(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證: = .(這個比值 叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個等腰三角形就叫做黃金三角形.請你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個黃金三角形ABC. (注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對作圖中涉及到的點用字母進行標注)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若α、β為方程2x2﹣5x﹣1=0的兩個實數(shù)根,則2α2+3αβ+5β的值為(
A.﹣13
B.12
C.14
D.15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取10%進行調查,根據(jù)調查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:

運動項目

頻數(shù)(人數(shù))

羽毛球

30

籃球

a

乒乓球

36

排球

b

足球

12


請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的a= , b=;
(2)在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;
(3)全校有多少名學生選擇參加乒乓球運動?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F(xiàn)分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準備對收費作如下調整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費.具體收費標準如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計車費

0

0.5

0.9

a

b

1.5

同時,就此收費方案隨機調查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

(Ⅰ)寫出a,b的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調整后,此運營商在該校投放A品牌共享單車能否獲利?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的最小整數(shù)解是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案