【題目】判斷下列各式從等號(hào)左邊到右邊的變形哪些是整式乘法,哪些是因式分解.

(1)a2-9b2=(a+3b)(a-3b);

(2)3y(x+2y)=3xy+6y2;

(3)(3a-1)2=9a2-6a+1;

(4)4y2+12y+9=(2y+3)2;

(5)x2+x=x2(1+);

(6)x2-y2+4y-4=(x-y)(x+y)+4(y-1).

【答案】(2)(3)是整式乘法,(1)(4)是因式分解.

【解析】

根據(jù)因式分解和整式乘法的定義即可解答.

(1)(4)的變形是把多項(xiàng)式化為整式乘積的形式,是因式分解;(2)(3)是整式乘法;(5)雖然是把多項(xiàng)式化為積的形式,但(1+)不是整式,不是因式分解;(6)運(yùn)用乘法公式,結(jié)果不是整式乘積的形式,故既不是整式乘法,也不是因式分解.

(2)(3)是整式乘法,(1)(4)是因式分解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)25×26________

(2)×________;

(3)-a2·a5________

(4)x2·x2m2________;

(5)(-b)2·(-b)3·(-b)5________;

(6)x·x4x5________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=C,AB=8厘米,BC=6厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).

1)用的代數(shù)式表示PC的長度;

2)若點(diǎn)PQ的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由;

3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,射線APABC的外側(cè),點(diǎn)B關(guān)于AP的對稱點(diǎn)為D,連接CD交射線AP于點(diǎn)E,連接BE.

(1)根據(jù)題意補(bǔ)全圖形;

(2)求證:CD=EB+EC;

(3)求證:∠ABE=ACE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點(diǎn),△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點(diǎn)F.若∠BAC=35°,則∠BFC的大小是(  )

A. 105° B. 110° C. 100° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣象臺(tái)發(fā)現(xiàn):在某段時(shí)間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時(shí)間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時(shí)間有(
A.9天
B.11天
C.13天
D.22天

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D為射線CB上一個(gè)動(dòng)點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過點(diǎn)EEF∥BC,交直線AC于點(diǎn)F,連接CE.

(1)如圖①,若∠BAC=60°,按邊分類:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如圖②,當(dāng)點(diǎn)D在線段CB上移動(dòng)時(shí),判斷△CEF的形狀并證明;

②當(dāng)點(diǎn)D在線段CB的延長線上移動(dòng)時(shí),△CEF是什么三角形?請?jiān)趫D③中畫出相應(yīng)的圖形,寫出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論: ①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司保安部去商店購買同一品牌的應(yīng)急燈和手電筒,查看定價(jià)后發(fā)現(xiàn),購買一個(gè)應(yīng)急燈和5個(gè)手電筒共需50元,購買3個(gè)應(yīng)急燈和2個(gè)手電筒共需85元.

(1)求出該品牌應(yīng)急燈、手電筒的定價(jià)分別是多少元?

(2)經(jīng)商談,商店給予該公司購買一個(gè)該品牌應(yīng)急燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果該公司需要手電筒的個(gè)數(shù)是應(yīng)急燈個(gè)數(shù)的2倍還多8個(gè),且該公司購買應(yīng)急燈和手電筒的總費(fèi)用不超過670元,那么該公司最多可購買多少個(gè)該品牌應(yīng)急燈?

查看答案和解析>>

同步練習(xí)冊答案