【題目】如圖,在ABC中,ABAC,∠BAC100°,在同一平面內(nèi),將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,連接BB1,若BB1AC1,則∠CAC1的度數(shù)是( 。

A.10°B.20°C.30°D.40°

【答案】B

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì),得到∠C1AB1∠CAB100°,AB1AB∠CAC1∠BAB1,根據(jù)平行線的性質(zhì)得到∠C1AB1+AB1B180°,然后由等腰三角形的性質(zhì),即可得到結(jié)論.

解:△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,

∴∠C1AB1∠CAB100°,AB1AB∠CAC1∠BAB1,

∵BB1∥AC1,

∴∠C1AB1+AB1B180°,

∴∠AB1B80°

∵ABAB1,

∴∠ABB1∠AB1B80°,

∴∠BAB120°

∴∠CAC120°,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yxxb)﹣y軸相交于A點(diǎn),與x軸相交于B、C兩點(diǎn),且點(diǎn)C在點(diǎn)B的右側(cè),設(shè)拋物線的頂點(diǎn)為P

1)若點(diǎn)B與點(diǎn)C關(guān)于直線x1對(duì)稱,求b的值;

2)若OBOA,求△BCP的面積;

3)當(dāng)﹣1x1時(shí),該拋物線上最高點(diǎn)與最低點(diǎn)縱坐標(biāo)的差為h,求出hb的關(guān)系;若h有最大值或最小值,直接寫出這個(gè)最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線AB的解析式為y=﹣x+4,拋物線y=﹣+bx+cy軸交于點(diǎn)A,與x軸交于點(diǎn)C6,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),求ABP面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo);

3)如圖②,當(dāng)點(diǎn)Py軸右側(cè)時(shí),過點(diǎn)A作直線lx軸,過點(diǎn)PPHl于點(diǎn)H,將APH繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)H的對(duì)應(yīng)點(diǎn)H恰好落在直線AB上時(shí),點(diǎn)P的對(duì)應(yīng)點(diǎn)P恰好落在坐標(biāo)軸上,請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3y軸交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A和點(diǎn)B,過點(diǎn)AACAB交拋物線于點(diǎn)C,過點(diǎn)CCDy軸于點(diǎn)D,點(diǎn)E在線段AC上,連接ED,且EDEC,連接EBy軸于點(diǎn)F

1)求拋物線的表達(dá)式;

2)求點(diǎn)C的坐標(biāo);

3)若點(diǎn)G在直線AB上,連接FG,當(dāng)AGFAFB時(shí),直接寫出線段AG的長;

4)在(3)的條件下,點(diǎn)H在線段ED上,點(diǎn)P在平面內(nèi),當(dāng)PAG≌△PDH時(shí),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長線交于點(diǎn) ,經(jīng)測(cè)量,

1)求線段的長度;(結(jié)果 精確到

2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)OAB上,⊙O經(jīng)過A、D兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F

1)求證:BC是⊙O的切線;

2)若⊙O的半徑是2cmE是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCO內(nèi)接三角形,ABO的直徑,C是弧AF的中點(diǎn),弦BCAF相交于點(diǎn)E,在BC延長線上取點(diǎn)D,使得AD=AE

1)求證:ADO切線;

2)若OEB=45°,求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,正方形ABCD的邊長為6,點(diǎn)E,點(diǎn)F分別在邊AB,AD上,AEDF2,連接DECF交于點(diǎn)G.連接ACDE交于點(diǎn)M,延長CB至點(diǎn)K,使BK3,連接GKAB于點(diǎn)N

(1)求證:CFDE

(2)求△AMD的面積;

(3)請(qǐng)直接寫出線段GN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案