【題目】如圖,在△ABC中,AB=AC,∠BAC=100°,在同一平面內(nèi),將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,連接BB1,若BB1∥AC1,則∠CAC1的度數(shù)是( 。
A.10°B.20°C.30°D.40°
【答案】B
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì),得到∠C1AB1=∠CAB=100°,AB1=AB,∠CAC1=∠BAB1,根據(jù)平行線的性質(zhì)得到∠C1AB1+AB1B=180°,然后由等腰三角形的性質(zhì),即可得到結(jié)論.
解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,
∴∠C1AB1=∠CAB=100°,AB1=AB,∠CAC1=∠BAB1,
∵BB1∥AC1,
∴∠C1AB1+AB1B=180°,
∴∠AB1B=80°,
∵AB=AB1,
∴∠ABB1=∠AB1B=80°,
∴∠BAB1=20°,
∴∠CAC1=20°,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x(x﹣b)﹣與y軸相交于A點(diǎn),與x軸相交于B、C兩點(diǎn),且點(diǎn)C在點(diǎn)B的右側(cè),設(shè)拋物線的頂點(diǎn)為P.
(1)若點(diǎn)B與點(diǎn)C關(guān)于直線x=1對(duì)稱,求b的值;
(2)若OB=OA,求△BCP的面積;
(3)當(dāng)﹣1≤x≤1時(shí),該拋物線上最高點(diǎn)與最低點(diǎn)縱坐標(biāo)的差為h,求出h與b的關(guān)系;若h有最大值或最小值,直接寫出這個(gè)最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線AB的解析式為y=﹣x+4,拋物線y=﹣+bx+c與y軸交于點(diǎn)A,與x軸交于點(diǎn)C(6,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),求△ABP面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)P在y軸右側(cè)時(shí),過點(diǎn)A作直線l∥x軸,過點(diǎn)P作PH⊥l于點(diǎn)H,將△APH繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)H的對(duì)應(yīng)點(diǎn)H′恰好落在直線AB上時(shí),點(diǎn)P的對(duì)應(yīng)點(diǎn)P′恰好落在坐標(biāo)軸上,請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A和點(diǎn)B,過點(diǎn)A作AC⊥AB交拋物線于點(diǎn)C,過點(diǎn)C作CD⊥y軸于點(diǎn)D,點(diǎn)E在線段AC上,連接ED,且ED=EC,連接EB交y軸于點(diǎn)F.
(1)求拋物線的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)G在直線AB上,連接FG,當(dāng)∠AGF=∠AFB時(shí),直接寫出線段AG的長;
(4)在(3)的條件下,點(diǎn)H在線段ED上,點(diǎn)P在平面內(nèi),當(dāng)△PAG≌△PDH時(shí),直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長線交于點(diǎn) ,經(jīng)測(cè)量,
(1)求線段的長度;(結(jié)果 精確到)
(2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)O在AB上,⊙O經(jīng)過A、D兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O內(nèi)接三角形,AB是⊙O的直徑,C是弧AF的中點(diǎn),弦BC,AF相交于點(diǎn)E,在BC延長線上取點(diǎn)D,使得AD=AE.
(1)求證:AD是⊙O切線;
(2)若∠OEB=45°,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,正方形ABCD的邊長為6,點(diǎn)E,點(diǎn)F分別在邊AB,AD上,AE=DF=2,連接DE,CF交于點(diǎn)G.連接AC與DE交于點(diǎn)M,延長CB至點(diǎn)K,使BK=3,連接GK交AB于點(diǎn)N.
(1)求證:CF⊥DE;
(2)求△AMD的面積;
(3)請(qǐng)直接寫出線段GN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com