18.利用因式分解計算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)

分析 根據(jù)平方差公式將每一個括號展開,然后利用分?jǐn)?shù)的基本性質(zhì)進(jìn)行化簡.

解答 解:原式=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)…(1-$\frac{1}{n}$)(1+$\frac{1}{n}$)
=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×…$\frac{n-1}{n}$×$\frac{n+1}{n}$
=$\frac{1}{2}$×$\frac{n+1}{n}$
=$\frac{n+1}{2n}$

點(diǎn)評 本題考查平方差公式的應(yīng)用,解題的關(guān)鍵是將各個括號利用平方差公式進(jìn)行分解,本題屬于中等題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.若x>y,則下列式子錯誤的是( 。
A.x+2>y+2B.-2x<-2yC.1-x>1-yD.$\frac{x}{2}>\frac{y}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.如圖,一段拋物線y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;
將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;

如此進(jìn)行下去,直至得C13.若點(diǎn)P(37,m)在第13段拋物線C13上,則m=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.如圖,利用四個全等的直角三角形拼成的“趙爽弦圖”中,小正方形的面積是1,大正方形的面積是25,直角三角形中較大的銳角為β,那么tanβ=$\frac{4}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B和點(diǎn)C的坐標(biāo)分別為(3,0)(0,-3),拋物線的對稱軸為x=1,D為拋物線 的頂點(diǎn).
(1)求拋物線的解析式.
(2)拋物線的對稱軸上是否存在一點(diǎn)P,使△PCD為等腰三角形?若存在,寫出點(diǎn)P點(diǎn)的坐標(biāo),若不存在,說明理由.
(3)點(diǎn)E為線段BC上一動點(diǎn),過點(diǎn)E作x軸的垂線,與拋物線交于點(diǎn)F,求四邊形ACFB面積的最大值,以及此時點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖1,在△ABC中,∠BAC=90°,AC=2AB,D是線段AC中點(diǎn),E是線段AD上一點(diǎn),過點(diǎn)D作DF⊥BE交BE的延長錢于點(diǎn)F,連接AF,過點(diǎn)A作AG⊥AF于點(diǎn)A,交BF于點(diǎn)G
(1)若∠ABE=∠C,BC=2$\sqrt{5}$,則AE=1;
(2)若點(diǎn)E為AD中點(diǎn),求證:GE-FE=FD;
(3)如圖2,連接BD,點(diǎn)N為BD中點(diǎn),連接GN,若AD=GF,請直接寫出NG、GE、EA的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.直線l上一點(diǎn)與圓心O的距離恰好等于圓的半徑,則直線l與⊙O的位置關(guān)系是( 。
A.相切B.相交C.相切或相交D.相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(-3,0),C(1,0),$\frac{BC}{AC}$=$\frac{3}{4}$,
(1)求直線AB的解析式;
(2)在x軸上確定一點(diǎn)D,連接DB,使得△ADB與△ABC相似,并求出點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動點(diǎn),連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ與△ADB相似?如存在,請直接寫出m的值;如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)P在△ABC內(nèi),若AP=CP,且AB>BC,則點(diǎn)P一定在( 。
A.邊AC的垂直平分線上B.邊AB的垂直平分線上
C.邊BC的垂直平分線上D.邊AC的高上

查看答案和解析>>

同步練習(xí)冊答案