【題目】

如圖所示,小吳和小黃在玩轉(zhuǎn)盤游戲,準(zhǔn)備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤甲、乙,每個轉(zhuǎn)盤被分成面積相等的幾個扇形區(qū)域,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字,游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動后,指針?biāo)干刃螀^(qū)域內(nèi)的數(shù)字之和為4,56時,則小吳勝;否則小黃勝.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域為止)

1)這個游戲規(guī)則對雙方公平嗎?說說你的理由;

2)請你設(shè)計一個對雙方都公平的游戲規(guī)則.

【答案】1)不公平

2

【解析】

解:列表或畫樹狀圖正確,

轉(zhuǎn)盤甲
轉(zhuǎn)盤乙

1

2

3

4

5

1

1,1)和為2

2,1)和為3

3,1)和為4

4,1)和為5

51)和為6

2

1,2)和為3

2,2)和為4

3,2)和為5

4,2)和為6

5,2)和為7

3

13)和為4

2,3)和為5

3,3)和為6

4,3)和為7

53)和為8

4

1,4)和為5

2,4)和為6

34)和為7

4,4)和為8

5,4)和為9

1)數(shù)字之和一共有20種情況,和為4,56的共有11種情況,

∵P(小吳勝)=P(小黃勝)=,

這個游戲不公平;

2)新的游戲規(guī)則:和為奇數(shù)小吳勝,和為偶數(shù)小黃勝.

理由:數(shù)字和一共有20種情況,和為偶數(shù)、奇數(shù)的各10種情況,

∴P(小吳勝)=P(小黃勝)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,長的最大值與最小值的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2mx﹣3m≠0)與x軸交于A3,0),B兩點.

1)求拋物線的表達(dá)式及點B的坐標(biāo);

2)當(dāng)﹣2x3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;

3)在(2)的條件下,將圖象Gx軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經(jīng)過點C4.2)的直線y=kx+bk≠0)與圖象M在第三象限內(nèi)有兩個公共點,結(jié)合圖象求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第二十四屆冬季奧林匹克運動會將于2022年在北京市和張家口市舉行.為了調(diào)查學(xué)生對冬奧知識的了解情況,從甲、乙兩校各隨機抽取20名學(xué)生進(jìn)行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.甲校20名學(xué)生成績的頻數(shù)分布表和頻數(shù)分布直方圖如圖:

甲校學(xué)生樣本成績頻數(shù)分布表(表1

成績m(分)

頻數(shù)(人數(shù))

頻率

50≤m60

a

0.05

60≤m70

b

c

70≤m80

3

0.15

80≤m90

8

0.40

90≤m100

6

0.30

合計

20

1.0

b.甲校成績在80≤m90的這一組的具體成績是:

87 88 88 88 89 89 89 89

c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如表所示(表2):

學(xué)校

平均分

中位數(shù)

眾數(shù)

方差

84

n

89

129.7

84.2

85

85

138.6

根據(jù)以如圖表提供的信息,解答下列問題:

1)表1a   ;表2中的中位數(shù)n   ;

2)補全圖1甲校學(xué)生樣本成績頻數(shù)分布直方圖;

3)在此次測試中,某學(xué)生的成績是87分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是   校的學(xué)生(填),理由是   ;

4)假設(shè)甲校200名學(xué)生都參加此次測試,若成績80分及以上為優(yōu)秀,估計成績優(yōu)秀的學(xué)生人數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點A、B.點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標(biāo)為m

1)點A的坐標(biāo)為   

2)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.

3)點P在線段OA上時,若以BE、F為頂點的三角形與△FPA相似,求m的值.

4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點D是等腰直角ABC的重心,其中ACB=90°,將線段CD繞點C逆時針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,若ABC的周長為6,則DCE的周長為(  )

A. 2 B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90,DAC的中點,⊙O經(jīng)過AB、D三點,CB的延長線交⊙O于點E

(1)求證:AE=CE

(2)EF與⊙O相切于點E,交AC的延長線于點F,且CD=CF=2cm,求⊙O的直徑.

(3)EF與⊙O相切于點E,點C在線段FD上,且CF:CD=2:1,求sinCAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為平面直角坐標(biāo)系的原點,點Ax軸上,△OAB是邊長為4的等邊三角形,以O為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標(biāo)為(  )

A. (2,2 B. (﹣2,4) C. (﹣2,2 D. (﹣2,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,

1)求證:△AME∽△BEC

2)若△EMC∽△AME,求ABBC的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案