【題目】一輛貨車從百貨大樓出發(fā)送貨,向東走了4千米到達小明家,繼續(xù)向東走了1.5千米到達小紅家,然后向西走了8.5千米到達小剛家,最后返回百貨大樓.

1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請在數(shù)軸上標出小明、小紅、小剛家的位置.(小明家用點表示,小紅家用點表示,小剛家用點表示)

2)求這輛貨車此次送貨(從出發(fā)到返回百貨大樓)總共走的路程.

【答案】1)圖見解析;(217千米

【解析】

1)向東走往原點右邊數(shù),向西走往原點左邊數(shù),即可得出答案;

2)先求出小剛家到百貨大樓的距離,再將所有數(shù)字加起來即可得出答案.

解:(1)如圖所示:

2)由圖可知,小剛家到百貨大樓的距離為3個單位長度

∴總路程=4+1.5+8.5+3=17千米

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①∠1+2與∠B+C有什么關(guān)系?為什么?

2)把圖①ABC沿DE折疊,得到圖②,填空:

1+2   B+C(填”“”“),當∠A60°時,∠B+C+1+2   

3)如圖③,是由圖①的ABC沿DE折疊得到的,猜想∠BDA+CEA與∠A的關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DE垂直平分AB

1)若AB=AC=10cmBC=6cm,求BCE的周長;

2)若A=40°,求EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,BC,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學生?

2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?

4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在直線l上,點Q沿著直線l以3厘米/秒的速度由點A向右運動,以AQ為邊作Rt,使∠BAQ=90°,,點C在點Q右側(cè),CQ=1厘米,過點C作直線ml,過的外接圓圓心OODm于點D,交AB右側(cè)的圓弧于點E.在射線CD上取點F,使DF=CD,以DE、DF為鄰邊作矩形DEGF.設運動時間為t秒.

(1)直接用含t的代數(shù)式表示BQ、DF

(2)0t1時,求矩形DEGF的最大面積;

(3)Q在整個運動過程中,當矩形DEGF為正方形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線交x軸于A,B兩點(點A在點B的右側(cè)),交y軸于點

C,頂點為D,對稱軸分別交x軸、AC于點E、F,點P是射線DE上一動點,過點P作AC的平行線

MN交x軸于點H,交拋物線于點M,N(點M位于對稱軸的左側(cè)).設點P的縱坐標為t..

(1)求拋物線的對稱軸及點A的坐標.

(2)當點P位于EF的中點時,求點M的坐標.

(3)① 點P在線段DE上運動時,當時,求t的值.

② 點Q是拋物線上一點,點P在整個運動過程中,滿足以點C,P,M,Q為頂點的四邊形是平行

四邊形時,則此時t的值是 (請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】取最小值時,代數(shù)式的最小值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠B=90°,點P從點A出發(fā),沿A→B→C1cm/s的速度運動.設APC的面積為sm),點P的運動時間為ts),變量St之間的關(guān)系如圖2所示,則在運動過程中,S的最大值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,B=60°,點GCD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是(

A. B. C. D.

查看答案和解析>>

同步練習冊答案