【題目】已知點(diǎn)P(x,y),且|x﹣2|+|y+4|=0,則點(diǎn)P在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

【答案】D
【解析】解:由題意得,|x﹣2|=0,|y+4|=0, 解得x=2,y=﹣4,
所以,點(diǎn)P(2,﹣4)在第四象限.
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知凸五邊形ABCDE的邊長均相等,且∠DBE=∠ABE+∠CBD,AC=1,則BD必定滿足(
A.BD<2
B.BD=2
C.BD>2
D.以上情況均有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中的假命題是( )

A. 過直線外一點(diǎn)有且只有一條直線與這條直線平行

B. 平行于同一直線的兩條直線平行

C. 直線y2x1與直線y2x+3一定互相平行

D. 如果兩個(gè)角的兩邊分別平行,那么這兩個(gè)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣2,4)位于( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)工程,甲、乙兩公司合做,12天可以完成,共需付工費(fèi)102000元;如果甲、乙兩公司單獨(dú)完成此項(xiàng)公程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲、乙公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司施工費(fèi)較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.如果兩個(gè)角相等,那么這兩個(gè)角是對(duì)頂角

B.內(nèi)錯(cuò)角相等

C.過直線外一點(diǎn)有且只有一條直線與已知直線平行

D.一個(gè)角的補(bǔ)角一定是鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;

(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?

(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,分別以點(diǎn)A,C為圓心,大于 AC長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,與AC,BC分別交于點(diǎn)D,E,連接AE.

(1)求∠ADE的度數(shù)(直接寫出結(jié)果);
(2)當(dāng)AB=3,BC=4時(shí),求△ABE的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案