試題分析:(1)根據(jù)題意知B點坐標為(6,2);
(2)①可設t秒后△OPQ的面積等于1,則有P(
,t)Q(2t,0),根據(jù)三角形的面積即可計算出t的值;
②要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°,進而利用勾股定理分別分析得出PB
2=(6-t)
2+(2-t)
2,QB
2=(6-2t)
2+2
2,PQ
2=(2t-t)
2+t
2=2t
2,再分別就∠PQB=90°和∠PBQ=90°討論,求出符合題意的t值即可;
(3)存在這樣的t值,若將△PQB繞某點旋轉180°,三個對應頂點恰好都落在拋物線上,則旋轉中心為PQ中點,此時四邊形PBQB′為平行四邊形,根據(jù)平行四邊形的性質(zhì)和對稱性可求出t的值.
試題解析:(1)根據(jù)題意知B點坐標為(6,2);
(2)①設t秒后△OPQ的面積等于1,則有P(
,t)Q(2t,0),則有:
×t×2t=1
解得:t=1或-1(舍去)
故1秒后△OPQ的面積等于1
②要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°.
如圖1,作PG⊥OC于點G,在Rt△POG中,
∵∠POQ=45°,∴∠OPG=45°,
∵OP=
t,∴OG=PG=t,
∴點P(t,t)
又∵Q(2t,0),B(6,2),
根據(jù)勾股定理可得:PB
2=(6-t)2+(2-t)2,QB
2=(6-2t)
2+2
2,PQ
2=(2t-t)
2+t
2=2t
2,
①若∠PQB=90°,則有PQ
2+BQ
2=PB
2,
即:2t
2+[(6-2t)
2+2
2]=(6-t)
2+(2-t)
2,
整理得:4t
2-8t=0,
解得:t
1=0(舍去),t
2=2,
∴t=2,
②若∠PBQ=90°,則有PB
2+QB
2=PQ
2,
∴[(6-t)
2+(2-t)
2]+[(6-2t)
2+2
2]=2t
2,
整理得:t
2-10t+20=0,
解得:t=5±
.
∴當t=2或t=5+
或t=5-
時,△PQB為直角三角形.
(3)存在這樣的t值,理由如下:
將△PQB繞某點旋轉180°,三個對應頂點恰好都落在拋物線上,
則旋轉中心為PQ中點,此時四邊形PBQB′為平行四邊形.
∵PO=PQ,由P(t,t),Q(2t,0),知旋轉中心坐標可表示為(
t,
t),
∵點B坐標為(6,2),∴點B′的坐標為(3t-6,t-2),
代入y=-
(x-t)
2+t,得:2t
2-13t+18=0,
解得:t
1=
,t
2=2.
考點: 二次函數(shù)綜合題.