【題目】為加強(qiáng)電動(dòng)自行車質(zhì)量監(jiān)管,切實(shí)保障消費(fèi)者的合法權(quán)益,2015年11月,河南開(kāi)封市工商局對(duì)24個(gè)品牌批次的電動(dòng)自行車進(jìn)行抽查檢驗(yàn),其中抽查檢驗(yàn)的某品牌的電動(dòng)自行車如圖所示,它的大燈M射出的光線MA,MB的與MN的夾角分別為76°和60°,MN⊥地面CD,MN=0.8m,圖中的陰影部分表示在夜晚時(shí),燈M所照射的范圍.(提示:≈1.7,sin14° , cos14°≈ , tan14
(1)求陰影部分的面積;
(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是0.2s.小鵬某天晚上以6m/s的速度駕駛該車,在行駛的途中,通過(guò)大燈M,他發(fā)現(xiàn)在他的正前方有一個(gè)小球(即小孩在圖中的點(diǎn)A處),小鵬從做出剎車動(dòng)作到電動(dòng)自行車停止的剎車距離為1.3m,請(qǐng)判斷小鵬當(dāng)時(shí)是否有撞到該小孩?(大燈M與前輪前端間的水平距離為0.3m).

【答案】解:(1)由題意得,∠AMN=76°,∠BMN=60°,
則∠MAN=14°,∠MBN=30°,
∴AN=≈3.2m,BN=≈1.36m,
∴AB=AN﹣BN=1.84m,
則陰影部分的面積=×AB×MN=0.736m2;
(2)小鵬從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)行駛的距離是0.2×6=1.2m,
∴小鵬距離小孩的距離是3.2﹣(1.2+1.3+0.3)=0.3m,
∴小鵬當(dāng)時(shí)沒(méi)有撞到該小孩.
【解析】(1)根據(jù)題意得到∠AMN和∠BMN的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠MAN和∠MBN的度數(shù),根據(jù)正切的定義求出AN、BN,求出AB,根據(jù)三角形面積公式計(jì)算即可;
(2)根據(jù)題意求出小鵬距離小孩的距離進(jìn)行判斷即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)OBE平分∠ABCAC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解中學(xué)生的體能情況,某校抽取了50名八年級(jí)學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出了頻數(shù)分布直方圖如下圖所示已知圖中從左到右前第一、第二、第三、第五小組的頻率分別為0.04 , 0.12 ,0.4 ,O.28 ,根據(jù)已知條件解答下列問(wèn)題:

(1)第四個(gè)小組的頻率是多少? 你是怎樣得到的?

(2)這五小組的頻數(shù)各是多少?

(3)在這次跳繩中,跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?

(4)將頻數(shù)分布直方圖補(bǔ)全,并分別寫出各個(gè)小組的頻數(shù),并畫(huà)出頻數(shù)分布折線圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,D,E為BC上兩點(diǎn),過(guò)點(diǎn)D,E分別作AC,AB的垂線,兩垂線交于點(diǎn)M,垂足分別為G,F(xiàn),若∠AED=∠BAD,AB=AC=2,則下列說(shuō)法中不正確的是( 。

A.△CAE∽△BDA
B.
C.BD?CE=4
D.BE=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….

若字母 表示自然數(shù),請(qǐng)把你觀察到的規(guī)律用含有 的式子表示出來(lái)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A(﹣ , 0),點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時(shí),△OPN∽△COB,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中卷第九勾股,主要講述了以測(cè)量問(wèn)題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開(kāi)門,出東門一十五里有木,問(wèn):出南門幾何步而見(jiàn)木?”
譯文:“今有一座長(zhǎng)方形小城,東西向城墻長(zhǎng)7里,南北向城墻長(zhǎng)9里,各城墻正中均開(kāi)一城門.走出東門15里處有棵大樹(shù),問(wèn)走出南門多少步恰好能望見(jiàn)這棵樹(shù)?”(注:1里=300步)
你的計(jì)算結(jié)果是:出南門 步而見(jiàn)木.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的解析表達(dá)式為:y=﹣3x+3,且l1x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A,B,直線l1,l2交于點(diǎn)C根據(jù)圖中信息

1)求直線l2的解析表達(dá)式;

2)求ADC的面積;

3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得ADPADC的面積相等,求出點(diǎn)P的坐標(biāo);

4)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以AD、C、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積.

(2)在圖形中作出△ABC關(guān)于x軸的對(duì)稱圖形△A1B1C1.寫出點(diǎn)A1,B1,C1的坐標(biāo).

(3)在圖形中作出△ABC關(guān)于y軸的對(duì)稱圖形△A2B2C2.寫出點(diǎn)A2,B2,C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案