【題目】如圖,直線和拋物線都經(jīng)過點(diǎn)A(1,0),B,且當(dāng)時(shí),二次函數(shù)的值為.
(1)求的值和拋物線的解析式;
(2)求不等式的解集.
【答案】(1)m=1;y=x23x+2;(2)x<1或x>3.
【解析】
(1)直接把點(diǎn)A(1,0)代入直線y=x+m即可得出m的值;再把點(diǎn)A(1,0)與當(dāng)x=4時(shí),y=6代入拋物線y=x2+bx+c即可得出b、c的值,進(jìn)而得出拋物線的解析式;
(2)根據(jù)(1)中m、b、c的值即可得出一次函數(shù)與二次函數(shù)的解析式,故可得出B點(diǎn)坐標(biāo),根據(jù)函數(shù)的圖象即可得出結(jié)論.
(1)∵直線y=x+m和經(jīng)過點(diǎn)A(1,0),
∴1+m=0,解得m=1;
∵拋物線y=x2+bx+c經(jīng)過點(diǎn)A(1,0),且當(dāng)x=4時(shí),二次函數(shù)的值為6,
∴ ,解得,
∴拋物線的解析式為y=x23x+2;
(2)∵由(1)知m=1,拋物線的解析式為y=x23x+2,
∴直線的解析式為y=x1,
∴ ,解得 或,
∴B(3,2).
∵由函數(shù)圖象可知,當(dāng)x<1或x>3時(shí),二次函數(shù)的值大于一次函數(shù)的值,
∴不等式x2+bx+c>x+m的解集為x<1或x>3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣2,0),且對(duì)稱軸為直線x=1,其部分圖象如圖所示.對(duì)于此拋物線有如下四個(gè)結(jié)論:
①ac>0;②16a+4b+c=0;③若m>n>0,則x=1+m時(shí)的函數(shù)值大于x=1﹣n時(shí)的函數(shù)值;④點(diǎn)(﹣,0)一定在此拋物線上.其中正確結(jié)論的序號(hào)是( 。
A. ①②B. ②③C. ②④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)G在直徑DF的延長線上,∠D=∠G=30°.
(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組的小穎想測量教學(xué)樓前的一棵樹的樹高,下午課外活動(dòng)時(shí)她測得一根長為1m的竹竿的影長是0.8m,但當(dāng)她馬上測量樹高時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請(qǐng)你幫她算一下,樹高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于(-1,0)點(diǎn),則下列結(jié)論中正確的是( )
A.c<0B.a-b+c<0C.b2<4acD.2a+b=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC形內(nèi)一點(diǎn),且∠APB=∠APC=135°.
(1)求證:△CPA∽△APB;
(2)試求tan∠PCB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4 經(jīng)過點(diǎn)A(﹣3,0),點(diǎn) B 在拋物線上,CB∥x軸,且AB 平分∠CAO.則此拋物線的解析式是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義一種新函數(shù):形如(,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個(gè)結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,和;②圖象具有對(duì)稱性,對(duì)稱軸是直線;③當(dāng)或時(shí),函數(shù)值隨值的增大而增大;④當(dāng)或時(shí),函數(shù)的最小值是0;⑤當(dāng)時(shí),函數(shù)的最大值是4.其中正確結(jié)論的個(gè)數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:與直線,直線分別交于點(diǎn)A,B,直線與直線交于點(diǎn).
(1)求直線與軸的交點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為.
①當(dāng)時(shí),結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域內(nèi)沒有整點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com