【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時,把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動兩個轉(zhuǎn)盤停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).
(1)請用樹狀圖或列表法列出所有可能的結(jié)果;
(2)若指針所指的兩個數(shù)字都是方程x2-5x+6=0的解時,則甲獲勝;若指針所指的兩個數(shù)字都不是方程x2-5x+6=0的解時,則乙獲勝,問他們兩人誰獲勝的概率大?請分析說明.
【答案】(1)答案見解析;(2)此游戲乙獲勝的概率更大.
【解析】試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;
(2)首先求得方程x2-4x+3=0的解,由概率公式即可求得甲獲勝與乙獲勝的概率,繼而求得他們兩人誰獲勝的概率大.
試題解析:(1)列表如下:(畫樹狀圖略)
1 | 2 | 3 | 4 | |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
(2)因為,方程x2-5x+6=0的解是:x1=2,x2=3,
所以,從上表中可看出,指針所指的兩個數(shù)字有12種等可能的結(jié)果, 其中兩個數(shù)字都是方程x2-5x+6=0的解有2次,兩個數(shù)字都不是方程x2-5x+6=0的解有10次,
所以,P(甲勝)=,P(乙勝)=
所以,此游戲乙獲勝的概率更大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.
(1)當(dāng)t=2時,求線段PQ的長度;
(2)當(dāng)t為何值時,△PCQ的面積等于5cm2?
(3)在P、Q運動過程中,在某一時刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E給好落在AB的延長線上,連接AD,下列結(jié)論不一定正確的是( 。
A.AD∥BCB.∠DAC=∠EC.BC⊥DED.AD+BC=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+b的圖象與直線y=x+2相交于點A(1,m)和點B(n,0).
(1)試確定二次函數(shù)的解析式;
(2)在給出的平面直角坐標系中畫出這個函數(shù)圖象的草圖,并結(jié)合圖象直接寫出ax2+b>x+2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場老板對一種新上市商品的銷售情況進行記錄,已知這種商品進價為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當(dāng)銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關(guān)系式;
(3)如果想要每月獲得2400元的利潤,那么銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小紅玩拋硬幣游戲,連續(xù)拋兩次.小明說:“如果兩次都是正面,那么你贏;如果兩次是一正一反,則我贏.”小紅贏的概率是__________,據(jù)此判斷該游戲__________(填“公平”或“不公平”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,連接DC、BE.
(1)如圖1,求證:DC=BE;
(2)如圖2,DC,BE交于點F,用含α的式子表示∠AFE;
(3)如圖3,過A作AG⊥DC于點G,式于的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖⑴,在△ABC中,∠ABC 、∠ACB的平分線相交于點O,試說明∠BOC=90°+∠A;
(2)如圖⑵,在△ABC中,BD、CD分別是∠ABC 、∠ACB的外角平分線,試說明∠D=90°-∠A;
(3)如圖⑶,已知BD為△ABC的角平分線,CD為△ABC外角∠ACE的平分線,且與BD交于點D,試說明∠A=2∠D。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com