【題目】如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)墻上時(shí),梯子的頂端在B點(diǎn);當(dāng)它靠在另一側(cè)墻上時(shí),梯子的頂端在D點(diǎn).已知∠BAC=60°,∠DAE=45°,點(diǎn)D到地面的垂直距離DE=3米.求點(diǎn)B到地面的垂直距離BC

【答案】

【解析】

RtADE中,運(yùn)用勾股定理可求出梯子的總長(zhǎng)度,在RtABC中,根據(jù)已知條件再次運(yùn)用勾股定理可求出BC的長(zhǎng).

解:在RtDAE中,
∵∠DAE=45°,
∴∠ADE=DAE=45°AE=DE=3
AD2=AE2+DE2=32+32=36,
AD=6,即梯子的總長(zhǎng)為6米.
AB=AD=6
RtABC中,∵∠BAC=60°,
∴∠ABC=30°,
AC=AB=3
BC2=AB2-AC2=62-32=27,
BC==3m,
∴點(diǎn)B到地面的垂直距離BC=3m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,AOOCBOOD,且∠AOB2∠OAD.

(1)求證:四邊形ABCD是矩形;

(2)∠AOB∶∠ODC4∶3,求∠ADO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過原點(diǎn)O,與x軸交于點(diǎn)A(50),第一象限的點(diǎn)C(m,4)在拋物線上,y軸上有一點(diǎn)B(0,10).

(I).求拋物線的解析式及它的對(duì)稱軸;

()點(diǎn)在線段OB上,點(diǎn)Q在線段BC上,若,且,n的值;

()在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,BM為頂點(diǎn)的三角形是等腰三形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)C(3,4)的直線軸于點(diǎn)A,∠ABC=90°,AB=CB,曲線過點(diǎn)B,將點(diǎn)A沿軸正方向平移個(gè)單位長(zhǎng)度恰好落在該曲線上,則的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以為直徑的的切線,為切點(diǎn),平分,弦于點(diǎn),

1)求證:是等腰直角三角形;

2)求證:;

3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】柳州市某校的生物興趣小組在老師的指導(dǎo)下進(jìn)行了多項(xiàng)有意義的生物研究并取得成果.下面是這個(gè)興趣小組在相同的實(shí)驗(yàn)條件下,對(duì)某植物種子發(fā)芽率進(jìn)行研究時(shí)所得到的數(shù)據(jù):

種子數(shù)

30

75

130

210

480

856

1250

2300

發(fā)芽數(shù)

28

72

125

200

457

814

1187

2185

發(fā)芽頻率

0.9333

0.9600

0.9615

0.9524

0.9521

0.9509

0.9496

0.9500

依據(jù)上面的數(shù)據(jù)可以估計(jì),這種植物種子在該實(shí)驗(yàn)條件下發(fā)芽的概率約是_____(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,AB=4BC=6,點(diǎn)EBC邊的中點(diǎn),將△ABE沿直線AE折疊,點(diǎn)B落在點(diǎn)F處,連接CF,則sinECF的值為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程mx2+3x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍為( 。

A. m<B. m<m≠0C. m≤D. m≤ m≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,BE平分AD于點(diǎn)E

1)如圖1,若,求的面積;

2)如圖2,過點(diǎn)A,交DC的延長(zhǎng)線于點(diǎn)F,分別交BE,BC于點(diǎn)GH,且.求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案