如圖(1),一正方形紙板ABCD的邊長(zhǎng)為4,對(duì)角線AC、BD交于點(diǎn)O,一塊等腰直角三角形的三角板的一個(gè)頂點(diǎn)處于點(diǎn)O處,兩邊分別與線段AB、AD交于點(diǎn)E、F,設(shè)BE=
(1)若三角板的直角頂點(diǎn)處于點(diǎn)O處,如圖(2).判斷三角形EOF的形狀,并說(shuō)明理由。

(2)在(1)的條件下,若三角形EOF的面積為S,求S關(guān)于x的函數(shù)關(guān)系式。
(3)若三角板的銳角頂點(diǎn)處于點(diǎn)O處,如圖(3).

①若DF=,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
②探究直線EF與正方形ABCD的內(nèi)切圓的位置關(guān)系,并證明你的結(jié)論.
(1)△EOF是等腰直角三角形,(2)S=x2-2x+4 (3)EF與正方形ABCD的內(nèi)切圓相切。

試題分析:解:(1)∵正方形ABCD∴∠AOB=∠EOF=,BO=AO=OD,
∠OAF=∠OBE=∴∠AOF=∠BOE∴△AOF≌△BOE
∴OE=OF  ∴三角形EOF是等腰直角三角形。
(2)由△AOF≌△BOE得BE=AF,AE=FD=



(3)①∵∠EOF=∠0BE= ∴∠FOD+∠EOB=∠BEO+∠EOB=
∴∠FOD=∠BEO,又∠EBO=∠ODF=∴△BOE∽△DFO
 

②連結(jié)EF

由①知△BOE∽△DFO
∵BO=DO
而∠EOF=∠0BE=
∴△EOF∽△EBO,∴∠FEO=∠0EB
∴點(diǎn)O到EF、BE的距離相等,而O到BE的距離即為正方形內(nèi)切
圓⊙O的半徑
∴直線EF與正方形的內(nèi)切圓相切
點(diǎn)評(píng):熟知以上的定義性質(zhì),定理。本題應(yīng)用的知識(shí)面很廣,對(duì)學(xué)生要求很高,要認(rèn)真的體會(huì),把知識(shí)點(diǎn)很好的結(jié)合在一起,本題難度較大問(wèn)多,屬于偏難題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在坐標(biāo)系中,已知A(﹣3,0),B(0,﹣4),C(0,1),過(guò)點(diǎn)C作直線L交x軸于點(diǎn)D,使得以點(diǎn)D,C,O為頂點(diǎn)的三角形與△AOB相似,這樣的直線一共可以作出( 。
A.6條B.3條C.4條D.5條

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則=( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問(wèn)題背景
(1)如圖1,△ABC中,DEBC分別交ABACD,E兩點(diǎn),過(guò)點(diǎn)EEFABBC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:四邊形DBFE的面積     ,△EFC的面積     ,△ADE的面積     

探究發(fā)現(xiàn)
(2)在(1)中,若,DEBC間的距離為.請(qǐng)證明
拓展遷移
(3)如圖2,□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?)中的結(jié)論求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,EF//BC,,EF=3,則BC的長(zhǎng)為
A.6B.9C.12D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知相似△ADE與△ABC的相似比為1:2,則△ADE與△ABC的面積比為(       ).
A.1:2B.1:4C.2:1D.4:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A,B分別是兩條平行線m,n上任意兩點(diǎn),C是直線n上一點(diǎn),且∠ABC=90°,點(diǎn)E在AC的延長(zhǎng)線上,BC=kAB(k≠0).
(1)當(dāng)k=1時(shí),在圖(1)中,作∠BEF=∠ABC,EF交直線m于點(diǎn)F.寫(xiě)出線段EF與EB的數(shù)量關(guān)系,并加以證明;

(2)若k≠1,如圖(2),∠BEF=∠ABC,其它條件不變,探究線段EF與EB的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1,將三角板的直角頂點(diǎn)放在點(diǎn)P處,三角板的兩直角邊分別能與AB、BC邊相交于點(diǎn)E、F,連接EF.
(1)如圖,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合,求此時(shí)PC的長(zhǎng);

(2)將三角板從(1)中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)停止,在這個(gè)過(guò)程中,請(qǐng)你觀察、探究并解答:

①∠PEF的大小是否發(fā)生變化?請(qǐng)說(shuō)明理由;
②直接寫(xiě)出從開(kāi)始到停止,線段EF的中點(diǎn)所經(jīng)過(guò)的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AD、CE均是△ABC的高,交于H.若EB=EH=3,AE=4,則CH的長(zhǎng)為             .

查看答案和解析>>

同步練習(xí)冊(cè)答案