在-2,2,這三個(gè)實(shí)數(shù)中,最小的是________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn).小華按下列要求作圖:①在正方形網(wǎng)格的三條不同實(shí)線上各取一個(gè)格點(diǎn),使其中任意兩點(diǎn)不在同一條實(shí)線上;②連接三個(gè)格點(diǎn),使之構(gòu)成直角三角形,小華在左邊的正方形網(wǎng)格中作出了Rt△ABC.請(qǐng)你按照同樣的要求,在右邊的兩個(gè)正方形網(wǎng)格中各畫出一個(gè)直角三角形,使三個(gè)網(wǎng)格中的直角三角形互不全等,并分別求出這三個(gè)直角三角形的斜邊長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖1,A,B,C為三個(gè)超市,在A通往C的道路(粗實(shí)線部分)上有一D點(diǎn),D與B有道路(細(xì)實(shí)線部分)相通.A與D,D與C,D與B之間的路程分別為25km,10km,5km.現(xiàn)計(jì)劃在A通往C的道路上建一個(gè)配貨中心H,每天有一輛貨車只為這三個(gè)超市送貨.該貨車每天從H出發(fā),單獨(dú)為A送貨1次,為B送貨1次,為C送貨2次.貨車每次僅能給一家超市送貨,每次送貨后均返回配貨中心H,設(shè)H到A的路程為xkm,這輛貨車每天行駛的路程為ykm.

(1)用含的代數(shù)式填空:
當(dāng)0≤x≤25時(shí),
貨車從H到A往返1次的路程為2xkm,
貨車從H到B往返1次的路程為
(60-2x)
(60-2x)
km,
貨車從H到C往返2次的路程為
(140-4x)
(140-4x)
km,
這輛貨車每天行駛的路程y=
-4x+200
-4x+200

當(dāng)25<x≤35時(shí),
這輛貨車每天行駛的路程y=
100
100

(2)請(qǐng)?jiān)趫D2中畫出y與x(0≤x≤35)的函數(shù)圖象;
(3)配貨中心H建在哪段,這輛貨車每天行駛的路程最短?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:吉林省中考真題 題型:計(jì)算題

如圖1 ,為三個(gè)超市,在通往的道路(粗實(shí)線部分)上有一點(diǎn),有道路(細(xì)實(shí)線部分)相通.,,之間的路程分別為,.現(xiàn)計(jì)劃在通往的道路上建一個(gè)配貨中心,每天有一輛貨車只為這三個(gè)超市送貨.該貨車每天從出發(fā),單獨(dú)為送貨次,為送貨次,為送貨次.貨車每次僅能給一家超市送貨,每次送貨后均返回配貨中心.設(shè)的路程為.這輛貨車每天行駛的路程為.
(1)用含x的代數(shù)式填空:
當(dāng)時(shí),貨車從往返次的路程為.
往返次的路程為_______.
貨車從往返次的路程為_______.
這輛貨車每天行駛的路程__________.
當(dāng)時(shí), 
這輛貨車每天行駛的路程_________;
(2)請(qǐng)?jiān)趫D2中畫)的函數(shù)圖象;
(3)配貨中心建在哪段,這輛貨車每天行駛的路程最短?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•西城區(qū)一模)已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案