等腰三角形是銳角三角形.

(  )
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、下列說法中,正確的有( 。
①長方體、直六棱柱、圓錐都是多面體;
②腰相等的兩個等腰三角形全等;
③有一邊及一銳角相等的兩個直角三角形全等;
④兩直角邊長為8和15的直角三角形,斜邊上的中線長9;
⑤三角之比為3:4:5的三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)通過學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應(yīng)的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=
底邊
=
BC
AB
,容易知道一個角的大小與這個角的鄰對值也是一一對應(yīng)的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=
3
3

(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寶山區(qū)一模)通過銳角三角比的學(xué)習(xí),我們已經(jīng)知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長比與角的大小之間可以相互轉(zhuǎn)化.類似的我們可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖在△ABC中,AB=AC,
頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.我們?nèi)菀字酪粋角的大小與這個角的正對值也是互相唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題中,假命題是(  )

查看答案和解析>>

同步練習(xí)冊答案