【題目】已知拋物線的頂點(diǎn)為,且過(guò)點(diǎn).直線與軸相交于點(diǎn).
(1)求該拋物線的解析式;
(2)以線段為直徑的圓與射線相交于點(diǎn),求點(diǎn)的坐標(biāo).
【答案】(1);(2)或
【解析】
(1)先設(shè)出拋物線的頂點(diǎn)式,再將點(diǎn)A的坐標(biāo)代入可得出結(jié)果;
(2)先求出射線的解析式為,可設(shè)點(diǎn)P的坐標(biāo)為(x,x).圓與射線OA相交于兩點(diǎn),分兩種情況:①如圖1當(dāng)時(shí),構(gòu)造和,再在直角三角形中利用勾股定理,列方程求解;②如圖2,當(dāng)時(shí),構(gòu)造和,再在直角三角形中利用勾股定理,列方程求解.
解:(1)根據(jù)頂點(diǎn)設(shè)拋物線的解析式為:,
代入點(diǎn),得:,
拋物線的解析式為:.
設(shè)直線的解析式為:,
分別代入和,
得:,
直線的解析式為:;
(2)由(1)得:直線的解析式為,
令,得,
由題意可得射線的解析式為,
點(diǎn)在射線上,則可設(shè)點(diǎn),
由圖可知滿足條件的點(diǎn)有兩個(gè):
①當(dāng)時(shí),構(gòu)造和,
可得:如圖1:
由圖可得,,,
.
在Rt△PMD中,,
在Rt△PBG中,,
在Rt△BMH中,,
點(diǎn)在以線段為直徑的圓上,,
可得:,
即:.
整理,得:
,解得:;
,.
;
②當(dāng)時(shí),如圖2,構(gòu)造和,可得:
同理,根據(jù)BM2=BP2+PM2,可得方程:
42+42=(6-x)2+x2+(x-2)2+(x-4)2,化簡(jiǎn)得,
,解得:,
∵.
.
綜上所述,符合題目條件的點(diǎn)有兩個(gè),其坐標(biāo)分別為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,AC=BC,∠ACB=90°,點(diǎn)P為AB上一點(diǎn)(異于A、B),BD⊥直線CP于D,AE⊥直線CP于E,點(diǎn)F為AB的中點(diǎn),連接DF.
(1)可以把△ACE繞點(diǎn)F逆時(shí)針旋轉(zhuǎn) 度(度數(shù)不超過(guò)180°)和△ 重合,則∠FDE= °.
(2)取CE的中點(diǎn)G,連接AD、FG,求證:AD=2FG.
(3)如圖2,AB=8,等腰直角△MNH的斜邊NH的中點(diǎn)也為點(diǎn)F,直線AM和直線CH交于點(diǎn)Q,連接BQ,當(dāng)△MNH繞點(diǎn)F旋轉(zhuǎn)一周時(shí),請(qǐng)直接寫(xiě)出BQ長(zhǎng)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過(guò)O點(diǎn)且EF⊥AC分別交DC于F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為( )
(1)DC=3OG;(2)OG= BC;(3)△OGE是等邊三角形;(4).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(﹣1,0),B(3,0).
(1)求這個(gè)拋物線的解析式;
(2)將△AOC以每秒一個(gè)單位的速度沿x軸向右平移,平移時(shí)間為t秒,平移后的△A′O′C′與△BOC重疊部分的面積為S,A與B重合時(shí)停止平移,求S與t的函數(shù)關(guān)系式;
(3)點(diǎn)P在x軸上,連接CP,點(diǎn)B關(guān)于直線CP的對(duì)稱點(diǎn)為B′,若點(diǎn)B′落在這個(gè)拋物線的對(duì)稱軸上,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,∠AOB=90°,OA=4,OB=3,點(diǎn)E在線段OA上,EP⊥OA交AB于點(diǎn)N,PM⊥AB,直線PB與AO交于點(diǎn)F.
(1)若AN=3,S△PBN=8,求PN的長(zhǎng);
(2)設(shè)△PMN的周長(zhǎng)為C1,△AEN的周長(zhǎng)為C2,若△PFE~△BAO且=,求OE的長(zhǎng);
(3)如圖2,若OE=2,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α (0°<α<90°),連接E'A、E'B,求E'A+E'B的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)今年第一季度的產(chǎn)值為50萬(wàn)元,第二季度由于改進(jìn)了生產(chǎn)方法,產(chǎn)值提高了;但在今年第三、第四季度時(shí)該農(nóng)場(chǎng)因管理不善.導(dǎo)致其第四季度的產(chǎn)值與第二季度的產(chǎn)值相比下降了11.4萬(wàn)元.
(1)求該農(nóng)場(chǎng)在第二季度的產(chǎn)值;
(2)求該農(nóng)場(chǎng)在第三、第四季度產(chǎn)值的平均下降的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線y=ax2+bx-2與x軸交于點(diǎn)A(-3,0)、B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式.
(2)在拋物線上是否存在點(diǎn)D,使得△ABD的面積等于△ABC的面積的倍?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)E是以點(diǎn)C為圓心且1為半徑的圓上的動(dòng)點(diǎn),點(diǎn)F是AE的中點(diǎn),請(qǐng)直接寫(xiě)出線段OF的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,切于點(diǎn),交的延長(zhǎng)線于點(diǎn),且.
(1)求的度數(shù).
(2)若的半徑為2,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育中考前,抽樣調(diào)查了九年級(jí)學(xué)生的“1分鐘跳繩”成績(jī),并繪制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形圖中m= ;
(3)若“1分鐘跳繩”成績(jī)大于或等于140次為優(yōu)秀,則估計(jì)全市九年級(jí)5900名學(xué)生中“1分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的大約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com