【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點E,△PCD的周長為12,∠APB=60°.
求:(1)PA的長;
(2)∠COD的度數(shù).
【答案】.解:(1)由切線長定理可得△PCD的周長=PA+PB,PA=PB,
∴PA=PB=6 ………………………………………(4分)
(2)連接OA、OB、OE
利用切線長定理可證∠COD=∠AOB=(180°-∠P)=60° ………… (8分)
【解析】
(1)、可通過切線長定理將相等的線段進行轉(zhuǎn)換,得出三角形PDE的周長等于PA+PB的結(jié)論,即可求出PA的長;(2)、根據(jù)三角形的內(nèi)角和求出∠ADC和∠BEC的度數(shù)和,然后根據(jù)切線長定理,得出∠EDO和∠DEO的度數(shù)和,再根據(jù)三角形的內(nèi)角和求出∠DOE的度數(shù).
(1)∵CA,CE都是⊙O的切線,∴CA=CE, 同理:DE=DB,PA=PB,
∴△PCD的周長=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的長為6;
(2)∵∠P=60°,∴∠PCE+∠PDE=120°, ∴∠ACD+∠CDB=360°-120°=240°,
∵CA,CE是⊙O的切線, ∴∠OCE=∠OCA=∠ACD; 同理:∠ODE=∠CDB,
∴∠OCE+∠ODE= (∠ACD+∠CDB)=120°, ∴∠COD=180-120°=60°.
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的角平分線交DC于點E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上點A對應的數(shù)為a,點B對應的數(shù)為b,點A在負半軸,且|a|=6,b是最小的正偶數(shù).
(1)求線段AB的長;
(2)若點C在數(shù)軸上對應的數(shù)為x,且x是方程2x+1=3x-9的解,在數(shù)軸上是否存在點P,使得PA+PB=BC+AB,若存在,求出點P對應的數(shù),若不存在,說明理由.
(3)如圖,若Q是B點右側(cè)一點,QA的中點為M,N為QB的四等分點且靠近于Q點,當Q在B的右側(cè)運動時,說明:QM﹣BN的值不變,并求出其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今有三部自動換幣機,其中甲機總是將一枚硬幣換成2枚其他硬幣;乙機總是將一枚硬幣換成4枚其他硬幣;丙機總是將一枚硬幣換面10枚其他硬幣.某人共進行了12次換幣,便將一枚硬幣換成了81枚.試問他在丙機上換了_____次?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)切圓⊙O與AB,BC,AC分別相切于點D,E,F(xiàn),若,如圖①.
(1)判斷△ABC的形狀,并證明你的結(jié)論;
(2)設AE與DF相交于點M,如圖②,AF=2FC=4,求AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以線段AB為直徑作⊙O,CD與⊙O相切于點E,交AB的延長線于點D, 連接BE,過點O作OC∥BE交切線DE于點C,連接AC .
(1)求證:AC是⊙O的切線 ;
(2)若BD=OB=4,求弦AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)分別以直線AC,BC為軸,把△ABC旋轉(zhuǎn)一周,得到兩個不同的圓錐,求這兩個圓錐的側(cè)面積;
(2)以直線AB為軸,把△ABC旋轉(zhuǎn)一周,求所得幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用同樣規(guī)格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.
(1)鋪第5個圖形用黑色正方形瓷磚 塊;
(2)按照此方式鋪下去,鋪第 n 個圖形用黑色正方形瓷磚 塊;(用含 n的代數(shù)式表示)
(3)若黑、白兩種顏色的瓷磚規(guī)格都為( 長0.5米寬0.5米),且黑色正方形瓷磚每塊價格 25 元,白色正方形瓷磚每塊價格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com