【題目】如圖所示,在矩形中,已知,,點沿邊從點開始向點以每秒個單位長度的速度運動;點沿邊從點開始向點以每秒個單位長度的速度運動.如果,同時出發(fā),用秒表示運動的時間.

請解答下列問題:

(1)當(dāng)為何值時,是等腰直角三角形?

(2)當(dāng)t為何值時,以點,,為頂點的三角形與相似?

【答案】(1)詳見解析;(2)當(dāng)時,以點,為頂點的三角形與相似.

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)可得,即,計算即可;

2)分兩種情況:①,②,分別列出比例式求解即可.

解:(1)由題意可知,.

因為是等腰直角三角形,是直角,所以

所以,解得,

所以當(dāng)時,是等腰直角三角形.

2)根據(jù)題意,可分為兩種情況:

①若,則

所以解得,

即當(dāng)時,.

②若,則,

所以.解得

即當(dāng)時,.

因此,當(dāng)時,以點,,為頂點的三角形與相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購進甲、乙兩種規(guī)格的書架,經(jīng)市場調(diào)查發(fā)現(xiàn)有線上和線下兩種購買方式,具體情況如下表:

規(guī)格

線下

線上

單價(/)

運費(/)

單價(/)

運費(/)

240

0

210

20

300

0

250

30

(1)如果在線下購買甲、乙兩種書架共30個,花費8280元,求甲、乙兩種書架各購買了多少個?

(2)如果在線上購買甲、乙兩種書架共30個,且購買乙種書架的數(shù)量不少于甲種書架的3倍,請求出花費最少的購買方案及花費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機抽取了一部分學(xué)生進行風(fēng)味泰興﹣﹣我最喜愛的泰興美食調(diào)查活動,將調(diào)查問卷整理后繪制成如下圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

調(diào)查問卷在下面四種泰興美食中,你最喜愛的是( 。▎芜x)

A.黃橋燒餅 B.宣堡小餛飩C.蟹黃湯包 D.劉陳豬四寶

請根據(jù)所給信息解答下列問題:

1)本次抽樣調(diào)查的樣本容量是   ;

2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中“A”部分所對應(yīng)的圓心角的度數(shù)為   

3)若全校有1200名學(xué)生,請估計全校學(xué)生中最喜愛蟹黃湯包的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AB4,以AB的中點O為圓心作圓,圓O分別與AC、BC相切于點DE兩點,則弧DE的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點Ax軸上,點Cy軸上,點B的坐標(biāo)為(8,4),動點D從點O向點A以每秒兩個單位的速度運動,動點E從點C向點O以每秒一個單位的速度運動,設(shè)D、E兩點同時出發(fā),運動時間為t秒,將△ODE沿DE翻折得到△FDE

1)若四邊形ODFE為正方形,求t的值;

2)若t2,試證明A、FC三點在同一直線上;

3)是否存在實數(shù)t,使△BDE的面積最?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春平中學(xué)要為學(xué)?萍蓟顒有〗M提供實驗器材,計劃購買A型、B型兩種型號的放大鏡.若購買8A型放大鏡和5B型放大鏡需用220元;若購買4A型放大鏡和6B型放大鏡需用152元.

(1)求每個A型放大鏡和每個B型放大鏡各多少元;

(2)春平中學(xué)決定購買A型放大鏡和B型放大鏡共75個,總費用不超過1180元,那么最多可以購買多少個A型放大鏡?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標(biāo)為(1,0),頂點A的坐標(biāo)為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標(biāo)為( 。

A. ,0) B. (2,0) C. ,0) D. (3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BDBD于點E,點FM分別是AB,BC的中點,BN平分∠ABEAM于點N,ABACBD,連接MF,NF

(1)判斷△BMN的形狀,并證明你的結(jié)論;

(2)判斷△MFN△BDC之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線x軸于點,,交y軸于點C

求拋物線的解析式;

如圖2,D點坐標(biāo)為,連結(jié)若點H是線段DC上的一個動點,求的最小值.

如圖3,連結(jié)AC,過點Bx軸的垂線l,在第三象限中的拋物線上取點P,過點P作直線AC的垂線交直線l于點E,過點Ex軸的平行線交AC于點F,已知

求點P的坐標(biāo);

在拋物線上是否存在一點Q,使得成立?若存在,求出Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案