【題目】如圖,在平面直角坐標系中,直線l1yx+1y軸交于點A0,過點A0x軸的平行線交直線l2yB1,過點B1y軸的平行線交直線l1于點A1,以A0B1,A1為頂點構(gòu)造矩形A0B1A1M0;再過點A1x軸平行線交直線l2于點B2,過點B2y軸的平行線交直線l1于點A2,以A1,B2A2為頂點構(gòu)造矩形A1B2A2M1;…;照此規(guī)律,直至構(gòu)造矩形AnBn+1An+1Mn,則矩形AnBn+1An+1Mn的周長是_____

【答案】2n+2

【解析】

根據(jù)直線與x軸的成角和已知,可以判斷AnBn+1An+1Mn是正方形,再由直線平行內(nèi)錯角相等得到2A1B1=A1B2,2A2B2=A2B3,2AnBn=AnBn+1,可以求得A1B1=1,所以AnBn+1=2n,即可求解.

直線l1yx+1x軸正半軸夾角45°,

A0B1x軸,A1B2x軸,,AnBn+1x軸,

A1B1y軸,A2B2y軸,,AnBny軸,

∴四邊形A1B2A2M1;;矩形AnBn+1An+1Mn都是正方形,

B1,B2,Bn在直線l2y上,

2A1B1A1B22A2B2A2B3,,2AnBnAnBn+1

A00,1),

B111),

A1B11

AnBn+12n

AnBn+1An+1Mn的周長2n+2;

故答案為:2n+2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點A、C,與y軸相交于點B,A,0),且AOB∽△BOC
1)求C點坐標、∠ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關(guān)系式;
2)在線段AC上是否存在點Mm,0).使得以線段BM為直徑的圓與邊BC交于P點(與點B不同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A是直線上一點,點B軸上一點,且AB=6,則△AOB面積的最大值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解同學們對垃圾分類知識的了解程度,增強同學們的環(huán)保意識某校數(shù)學興趣小組設(shè)計了垃圾分類知識及投放情況問卷,并在本校隨機抽取若干名同學進行了問卷測試,根據(jù)測試成績分布情況,將測試成績分成A、B、CD四組,繪制了如下統(tǒng)計圖表

問卷測試成績分組表

組別

分數(shù)/

A

60x≤70

B

70x≤80

C

80x≤90

D

90x≤100

1)本次抽樣調(diào)查的樣本總量是   ;

2)樣本中,測試成績在B組的頻數(shù)是   ,D組的頻率是   ;

3)樣本中,這次測試成績的中位數(shù)落在   組;

4)如果該校共有880名學生,請估計成績在90x≤100的學生約有   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABCAC的中點,ADBCBO的延長線于點D,連接DC,DB平分∠ADC,作DEBC,垂足為E

1)求證:四邊形ABCD為菱形;

2)若BD8,AC6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 已知,在△ABC中,∠BCA90°,ACkBC,點DE分別在邊BC,AC上,且AEkCD,作線段DFDE,且DEkDF,連接EFAB于點G

1)如圖1,當k1時,求證:CED=∠BDF,②AGGB;

2)如圖2,當k1時,猜想的值,并說明理由;

3)當k2,AE4BD時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB,C三點均在O上,O外一點F,有OACF于點E,ABCF相交于點G,有FGFBACBF

(1)求證:FBO的切線.

(2)tanF,O的半徑為,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為正方形ABCD對角線的交點,EAB邊上一點,FBC邊上一點,△EBF的周長等于BC的長.

(1)若AB=12,BE=3,求EF的長;

(2)求∠EOF的度數(shù);

(3)若OE=OF,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購進一批節(jié)能燈,已知1A型節(jié)能燈和3B型節(jié)能燈共需26元;3A型節(jié)能燈和2B型節(jié)能燈共需29元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;

(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習冊答案