【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數量關系及位置關系,請直接寫出結論;
(2)現將圖①中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數量關系,并加以證明.
【答案】(1)PM=PN,PM⊥PN,理由見解析;(2)理由見解析;(3)PM=kPN;理由見解析
【解析】試題分析:(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)PM=kPN,由已知條件可證明△BCD∽△ACE,所以可得BD=kAE,因為點P、M、N分別為AD、AB、DE的中點,所以PM=BD,PN=AE,進而可證明PM=kPN.
試題解析:(1)PM=PN,PM⊥PN,理由如下:
∵△ACB和△ECD是等腰直角三角形, ∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中, ∴△ACE≌△BCD(SAS), ∴AE=BD,∠EAC=∠CBD,
∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點, ∴PM=BD,PN=AE,
∴PM=PM, ∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°, ∴∠MPA+∠NPC=90°,
∴∠MPN=90°, 即PM⊥PN;
(2)∵△ACB和△ECD是等腰直角三角形, ∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE. ∴∠ACE=∠BCD. ∴△ACE≌△BCD. ∴AE=BD,∠CAE=∠CBD.
又∵∠AOC=∠BOE,∠CAE=∠CBD, ∴∠BHO=∠ACO=90°.
∵點P、M、N分別為AD、AB、DE的中點, ∴PM=BD,PM∥BD; PN=AE,PN∥AE.
∴PM=PN. ∴∠MGE+∠BHA=180°. ∴∠MGE=90°. ∴∠MPN=90°. ∴PM⊥PN.
(3)PM=kPN
∵△ACB和△ECD是直角三角形, ∴∠ACB=∠ECD=90°. ∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD. ∵BC=kAC,CD=kCE, ∴=k. ∴△BCD∽△ACE. ∴BD=kAE.
∵點P、M、N分別為AD、AB、DE的中點, ∴PM=BD,PN=AE. ∴PM=kPN.
科目:初中數學 來源: 題型:
【題目】綜合題
(1)如圖,已知點C在線段AB上,且AC=6cm,BC=4cm,點M、N分別是AC、BC的中點,求線段MN的長度.
(2)對于(1)問,如果我們這樣敘述:“已知點C在直線AB上,且AC=6cm,BC=4cm,點M、N分別是AC,BC的中點,求線段MN的長度.”結果會有變化嗎?如果有,求出結果;如果沒有,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】a 為有理數,下列各式:
⑴ a2=(a)2 (2) |a|=|a| (3) a3=(a)3 (4) (a)3=∣a3∣
⑸ |a+b|=|a|+|b| (6) (a+b)2=a2+b2
其中一定成立的有( )個.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,由1,2,3,…組成一個數陣 ,觀察規(guī)律
例如9位于數陣中第4行的第3列(從左往右數),若2017在數陣中位于第m行的第n列(從左往右數),則m+n =.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是( )
A.摸出的三個球中至少有一個球是黑球
B.摸出的三個球中至少有一個球是白球
C.摸出的三個球中至少有兩個球是黑球
D.摸出的三個球中至少有兩個球是白球
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】通訊衛(wèi)星的高度是3.6×107米,電磁波在空中的傳播速度是3×108米/秒,從地面發(fā)射的電磁波被通訊衛(wèi)星接受并同時反射給地面需要( 。
A.3.6×10-1秒
B.1.2×10-1秒
C.2.4×10-2秒
D.2.4×10-1秒
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com