【題目】如圖,矩形中,是矩形內(nèi)一動點,且,則的最小值為_____

【答案】

【解析】

如圖,作PMADM,作點D關(guān)于直線PM的對稱點E,連接PE,EC.設AM=x.由PM垂直平分線段DE,得到PD=PE,因此PC+PD=PC+PE≥EC,利用勾股定理求出EC的值即可的最小值.

解:如圖,作PMADM,作點D關(guān)于直線PM的對稱點E,連接PE,EC

∵四邊形ABC都是矩形,
ABCDAB=CD=4,BC=AD=6

AM=x,則
,

x=2,
AM=2,DM=EM=4,即ED= DM+EM =8
RtECD中,,
PM垂直平分線段DE,
PD=PE,
PC+PD=PC+PE≥EC,
PD+PC≥,
PD+PC的最小值為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,EBC上一點,BE=2CE,連接DE,FDE中點,以DF為直角邊作等腰RtDFG,連接BG,將DFG繞點D順時針旋轉(zhuǎn)得DFG,G恰好落在BG的延長線上,連接FG,若BG=2,則SGFG=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為方便市民通行,某廣場計劃對坡角為30°,坡長為60 米的斜坡AB進行改造,在斜坡中點D 處挖去部分坡體(陰影表示),修建一個平行于水平線CA 的平臺DE 和一條新的斜坡BE

(1)若修建的斜坡BE 的坡角為36°,則平臺DE的長約為多少米?

(2)在距離坡角A點27米遠的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°那么主樓GH高約為多少米?

(結(jié)果取整數(shù),參考數(shù)據(jù):sin 36°06,cos 36°08,tan 36°0717)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

【答案】

【解析】試題解析:∵二次函數(shù)有最小值﹣2,

y=,

解得:m=.

型】填空
結(jié)束】
19

【題目】如圖,已知ABC三個頂點的坐標分別是A(-2,3),B(-3,-1),C(-1,1)

(1)畫出ABC繞點O逆時針旋轉(zhuǎn)90°后的A1B1C1,并寫出點A1的坐標;

(2)畫出ABC繞點O逆時針旋轉(zhuǎn)180°后的A2B2C2,并寫出點A2的坐標;

(3)直接回答:AOB與A2OB2有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨著點的位置變化而變化.

1)如圖1,當點在四邊形內(nèi)部或邊上時,連接,的數(shù)量關(guān)系是________的位置關(guān)系是_______;

2)如圖2,當點在四邊形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;

3)如圖3,當點在線段的延長線上時,連接,若,則線段______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

(1)①若∠DCB=45°,則∠ACB的度數(shù)為   

若∠ACB=140°,則∠DCE的度數(shù)為   

(2)(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當∠ACE<90°且點E在直線AC的上方時,當這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD及四邊形外一直線l,四個頂點A、B、C、D到直線l的距離分別為a、b、c、d.

(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關(guān)系式?證明你的結(jié)論.

(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請分情況寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某超市利用一個帶斜坡的平臺裝卸貨物,其縱斷面ACFE如圖所示. AE為臺面,AC垂直于地面,AB表示平臺前方的斜坡.斜坡的坡角∠ABC45°,坡長AB2m.為保障安全,又便于裝卸貨物,決定減小斜坡AB的坡角,AD 是改造后的斜坡(點D在直線BC上),坡角∠ADC31°.求斜坡AD底端D與平臺AC的距離CD.(結(jié)果精確到0.01m[參考數(shù)據(jù):sin31°=0.515,cos31°=0.857tan31°=0.601, ≈1.414]

查看答案和解析>>

同步練習冊答案