【題目】已知y與x﹣1成正比例,且當(dāng)x=3時(shí),y=4.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)當(dāng)x=﹣1時(shí),求y的值;
(3)當(dāng)﹣3<y<5時(shí),求x的取值范圍.
【答案】(1)y=2x﹣2;(2)﹣4;(3)x的取值范圍是﹣<x<.
【解析】
(1)利用正比例函數(shù)的定義,設(shè)y=k(x-1),然后把已知的一組對應(yīng)值代入求出k即可得到y與x的關(guān)系式;
(2)利用(1)中關(guān)系式求出自變量為-1時(shí)對應(yīng)的函數(shù)值即可;
(3)先求出函數(shù)值是-3和5時(shí)的自變量x的值,x的取值范圍也就求出了.
(1)設(shè)y=k(x﹣1),
把x=3,y=4代入得(3﹣1)k=4,解得k=2,
所以y=2(x﹣1),
即y=2x﹣2;
(2)當(dāng)x=﹣1時(shí),y=2×(﹣1)﹣2=﹣4;
(3)當(dāng)y=﹣3時(shí),x﹣2=﹣3,
解得:x=﹣,
當(dāng)y=5時(shí),2x﹣2=5,
解得:x=,
∴x的取值范圍是﹣<x<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線交BC于點(diǎn)D,AC的垂直平分線交BC于點(diǎn)E,連接AD,AE.
(1)若∠BAC=110°,求∠DAE的度數(shù);
(2)若∠BAC=θ(0°<θ<180°),求∠DAE的度數(shù).(用含θ的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行慢跑練習(xí),慢跑路程y(米)與所用時(shí)間t(分鐘)之間的關(guān)系如圖所示,下列說法錯(cuò)誤的是( )
A. 前2分鐘,乙的平均速度比甲快
B. 5分鐘時(shí)兩人都跑了500米
C. 甲跑完800米的平均速度為100米/分
D. 甲乙兩人8分鐘各跑了800米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB是⊙O的直徑,直線CP切⊙O于點(diǎn)C,過點(diǎn)B作BD⊥CP于D.
(1)求證:CB2=ABDB;
(2)若⊙O的半徑為2,∠BCP=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角△ABC中,∠C=90°,DE⊥AC于E,交AB于D.
(1)試指出BC、DE被AB所截時(shí),∠3的同位角、內(nèi)錯(cuò)角和同旁內(nèi)角;
(2)試說明∠1=∠2=∠3的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】熱點(diǎn)鏈接:某地周六購物節(jié)有購物津貼、定金膨脹等優(yōu)惠:
購物津貼優(yōu)惠:凡購物金額在400元及以上者均有優(yōu)惠津貼,每400元減50元(400整數(shù)倍后,余額小于400的部分不優(yōu)惠),例如原標(biāo)價(jià)1000元,可優(yōu)惠100元;
定金膨脹優(yōu)惠:對某指定商品提前付100元定金,則周六購物節(jié)當(dāng)天實(shí)付可抵200元(在購物津貼優(yōu)惠之后的基礎(chǔ)上抵扣)。
問題解決:
(1)客戶小明打算在周六購物節(jié)當(dāng)天購買標(biāo)價(jià)為3899元的A款手機(jī),他已經(jīng)在前一天預(yù)付了100元定金給商戶,則實(shí)付時(shí)可優(yōu)惠多少錢?
(2)購買手機(jī)有不交定金,預(yù)交100元定金兩種選擇.劉叔叔在周六購物節(jié)當(dāng)天購買B款手機(jī)實(shí)付價(jià)比原標(biāo)價(jià)的還便宜100元,已知原標(biāo)價(jià)介于4100元至4398元之間,試問劉叔叔是否交了100元定金,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(2,0)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,△ABC是邊長為2的等邊三角形,將△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△DCE,連接BD,交AC于點(diǎn)F.求線段BD的長.
(2)一次環(huán)保知識競賽共有25道題,規(guī)定答對一道題得4分,答錯(cuò)或不答一道題扣1分.在這次競賽中,小明被評為優(yōu)秀(85分或85分以上),小明至少答對了幾道題?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com