分析 (1)連結(jié)OD、AD,如圖,先利用圓周角定理得到∠ADB=90°,則根據(jù)等腰三角形的性質(zhì)得BD=CD,再證明OD為△ABC的中位線得到OD∥AC,加上DH⊥AC,所以O(shè)D⊥DH,然后根據(jù)切線的判定定理可判斷DH為⊙O的切線;
(2)連結(jié)DE,如圖,有圓內(nèi)接四邊形的性質(zhì)得∠DEC=∠B,再證明∠DEC=∠C,然后根據(jù)等腰三角形的性質(zhì)得到CH=EH;
(3)利用余弦的定義,在Rt△ADC中可計(jì)算出AC=5$\sqrt{5}$,在Rt△CDH中可計(jì)算出CH=$\sqrt{5}$,則CE=2CH=2$\sqrt{5}$,
然后計(jì)算AC-CE即可得到AE的長(zhǎng).
解答 (1)解:DH與⊙O相切.理由如下:
連結(jié)OD、AD,如圖,
∵AB為直徑,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
而AO=BO,
∴OD為△ABC的中位線,
∴OD∥AC,
∵DH⊥AC,
∴OD⊥DH,
∴DH為⊙O的切線;
(2)證明:連結(jié)DE,如圖,
∵四邊形ABDE為⊙O的內(nèi)接四邊形,
∴∠DEC=∠B,
∵AB=AC,
∴∠B=∠C,
∴∠DEC=∠C,
∵DH⊥CE,
∴CH=EH,即H為CE的中點(diǎn);
(3)解:在Rt△ADC中,CD=$\frac{1}{2}$BC=5,
∵cosC=$\frac{CD}{AC}$=$\frac{\sqrt{5}}{5}$,
∴AC=5$\sqrt{5}$,
在Rt△CDH中,∵cosC=$\frac{CH}{CD}$=$\frac{\sqrt{5}}{5}$,
∴CH=$\sqrt{5}$,
∴CE=2CH=2$\sqrt{5}$,
∴AE=AC-CE=5$\sqrt{5}$-2$\sqrt{5}$=3$\sqrt{5}$.
點(diǎn)評(píng) 本題考查了圓的綜合題:熟練掌握?qǐng)A周角定理、切線的判定定理和等腰三角形的判定與性質(zhì);會(huì)利用三角函數(shù)的定義解直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45° | B. | 30° | C. | 50° | D. | 55° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com