【題目】已知拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,8),且拋物線的對(duì)稱軸是直線x=﹣2.
(1)求此拋物線的表達(dá)式;
(2)連接AC,BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并判斷S取得最大值時(shí)△BCE的形狀;若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2﹣x+8;(2)﹣m2+4m,(3)△BCE為等腰三角形.理由見解析.
【解析】
(1) 先解一元二次方程, 得到線段0B、 OC的長(zhǎng), 也就得到了點(diǎn)B、 C兩點(diǎn)坐標(biāo), 根據(jù)拋物線的對(duì)稱性可得點(diǎn)A坐標(biāo),把A、 B、 C三點(diǎn)代入二次函數(shù)解析式就能求得二次函數(shù)解析式;
(2)易得=-,只需利用平行得到三角形相似, 求得EF長(zhǎng), 進(jìn)而利用相等角的正弦值求得ΔBEF中BE邊上的高;
(3) 利用二次函數(shù)求出最值, 進(jìn)而求得點(diǎn)E坐標(biāo). OC垂直平分BE, 那么EC=BC, 所求的三角形是等腰三角形.
(1)∵點(diǎn)B的坐標(biāo)為(2,0),拋物線的對(duì)稱軸是直線x=﹣2,
∴由拋物線的對(duì)稱性可得點(diǎn)A的坐標(biāo)為(﹣6,0),
∵點(diǎn)C(0,8)在拋物線y=ax2+bx+c的圖象上,
∴c=8,將A(﹣6,0)、B(2,0)代入表達(dá)式,得,
解得,
∴所求拋物線的表達(dá)式為y=﹣x2﹣x+8;
(2)依題意,AE=m,則BE=8﹣m,
∵OA=6,OC=8,
∴AC=10,
∵EF∥AC,
∴△BEF∽△BAC,
∴= 即=,
∴EF=,
過點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=
∴=
∴FG==8﹣m,
∴S=S△BCE﹣S△BFE=(8﹣m)×8﹣(8﹣m)(8﹣m)=(8﹣m)(8﹣8+m)=(8﹣m)m=﹣m2+4m,
(3)由S=﹣m2+4m=﹣(m﹣4)2+8可知,S存在最大值,
當(dāng)m=4時(shí),S最大值=8,
∵m=4,
∴AE=4,
∵OA=6,
∴OE=2,
∴點(diǎn)E的坐標(biāo)為(﹣2,0),
∵B(2,0),C(0,8),
∴△BCE為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)和是反比例函數(shù)圖象上兩點(diǎn),若,求的值;
(3)若M(x1,y1)和N(x2,y2)兩點(diǎn)在直線AB上,如圖2所示,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請(qǐng)?zhí)骄慨?dāng)x1、x2滿足什么關(guān)系時(shí),MN∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,,為軸正半軸上一點(diǎn),連接,在第一象限作, ,過點(diǎn)作直線軸于,直線與直線交于點(diǎn),且,則直線解析式為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圖2,圖3,圖4均為8×8的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1,圖中均有線段AB.按要求畫圖.
(1)在圖1中,以格點(diǎn)為頂點(diǎn),AB為腰畫一個(gè)銳角等腰三角形;
(2)在圖2中,以格點(diǎn)為頂點(diǎn),AB為底邊畫一個(gè)銳角等腰三角形.
(3)在圖3中,以格點(diǎn)為頂點(diǎn),AB為腰畫一個(gè)等腰直角三角形;
(4)在圖4中,以格點(diǎn)為頂點(diǎn),AB為一邊畫一個(gè)正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式;
(2)求拋物線與軸另一個(gè)交點(diǎn)的坐標(biāo),并觀察圖象直接寫出當(dāng)為何值時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動(dòng)點(diǎn),且AE=CF,當(dāng)BF+CE取得最小值時(shí),∠AFB=( 。
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,將正方形OEFG放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)F的坐標(biāo)為(-1,5),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com