【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PMN的面積;③△PAB的周長;④∠APB的大。虎葜本MN,AB之間的距離.其中會隨點P的移動而不改變的是( )

A. ①②③ B. ①②⑤ C. ②③④ D. ②④⑤

【答案】B

【解析】∵點AB為定點,點MN分別為PA,PB的中點,

MNPAB的中位線,

MN=AB,

即線段MN的長度不變,故①錯誤;

MN的長度不變,點PMN的距離等于lAB的距離的一半,

PMN的面積不變,故②正確;

PAPB的長度隨點P的移動而變化,

所以,PAB的周長會隨點P的移動而變化,故③錯誤;

APB的大小點P的移動而變化,故④錯誤。

直線MN,AB之間的距離不隨點P的移動而變化,故⑤正確;

綜上所述,會隨點P的移動而不變化的是①②⑤。

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:

先由甲同學(xué)從中隨機(jī)摸出一球,記下球號,并放回攪勻,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號。將甲同學(xué)摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問:這個游戲公平嗎?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖,則方程ax2+bx+c=m有實數(shù)根的條件是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張卡片(背面完全相同),分別寫有數(shù)字12、﹣1﹣2,把它們背面朝上洗勻后,甲同學(xué)抽取一張記下這個數(shù)字后放回洗勻,乙同學(xué)再從中抽出一張,記下這個數(shù)字,用字母b、c分別表示甲、乙兩同學(xué)抽出的數(shù)字.

1)用列表法求關(guān)于x的方程x2+bx+c=0有實數(shù)解的概率;

2)求(1)中方程有兩個相等實數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】袋子中裝有3個帶號碼的球,球號分別是2,3,5,這些球除號碼不同外其他均相同.

(1)從袋中隨機(jī)摸出一個球,求恰好是3號球的概率;

(2)從袋中隨機(jī)摸出一個球,再從剩下的球中隨機(jī)摸出一個球,用樹形圖列出所有可能出現(xiàn)的結(jié)果,并求兩次摸出球的號碼之和為5的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中裝有3個帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:

先由甲同學(xué)從中隨機(jī)摸出一球,記下球號,并放回攪勻,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號。將甲同學(xué)摸出的球號作為一個兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問:這個游戲公平嗎?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)上學(xué)期全部參加了捐款活動,捐款情況如下統(tǒng)計表:

金額(元)

5

10

15

20

25

30

人數(shù)(人)

8

12

10

6

2

2

(1)求該班學(xué)生捐款額的平均數(shù)和中位數(shù);

(2)試問捐款額多于15元的學(xué)生數(shù)是全班人數(shù)的百分之幾?

(3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學(xué)生、孤老病者三種被資助的對象,問該班捐給重病學(xué)生是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于某一點成中心對稱的兩個圖形,下列說法中,正確的個數(shù)有( )

①這兩個圖形完全重合;②對稱點的連線互相平行③對稱點所連的線段相等;④對稱點的連線相交于一點;⑤對稱點所連的線段被同一點平分⑥對應(yīng)線段互相平行或在同一直線上,且一定相等.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在直角坐標(biāo)系中,Rt△OAB的直角頂點Ax軸上,OA=4,AB=3.動點M從點A出發(fā),以每秒1個單位長度的速度,沿AO向終點O移動;同時點N從點O出發(fā),以每秒125個單位長度的速度,沿OB向終點B移動.當(dāng)兩個動點運(yùn)動了x秒(0x4)時,解答下列問題:

1)求點N的坐標(biāo)(用含x的代數(shù)式表示);

2)設(shè)△OMN的面積是S,求Sx之間的函數(shù)表達(dá)式;當(dāng)x為何值時,S有最大值?最大值是多少?

3)在兩個動點運(yùn)動過程中,是否存在某一時刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案