如圖,直線AB、CD相交于O,OE⊥AB,OF⊥CD,則與∠1互為余角的有


  1. A.
    3個
  2. B.
    2個
  3. C.
    1個
  4. D.
    0個
A
分析:由OE⊥AB,OF⊥CD可知:∠AOE=∠DOF=90°,而∠1、∠AOF都與∠EOF互余,可知∠1=∠AOF,因而可以轉化為求∠1和∠AOF的余角共有多少個.
解答:∵OE⊥AB,OF⊥CD,
∴∠AOE=∠DOF=90°,
即∠AOF+∠EOF=∠EOF+∠1,
∴∠1=∠AOF,
∴∠COA+∠1=∠1+∠EOF=∠1+∠BOD=90°.
∴與∠1互為余角的有∠COA、∠EOF、∠BOD三個.
故選A.
點評:本題解決的關鍵是由已知聯(lián)想到可以轉化為求∠1和∠AOF的余角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖,直線AB、CD、EF都經過點O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請寫出三對:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請你認真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB、CD、EF相交于點O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB,CD相交于O點,EO⊥CD,垂足為O點,若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習冊答案