【題目】在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),P點(diǎn)為y軸上一動(dòng)點(diǎn),且(b﹣2)2+|a﹣6|+=0.
(1)求點(diǎn)B、M的坐標(biāo);
(2)當(dāng)P點(diǎn)在線段OM上運(yùn)動(dòng)時(shí),試問是否存在一個(gè)點(diǎn)P使S△PAB=13,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo)與AB的長度;若不存在,請(qǐng)說明理由.
(3)不論P點(diǎn)運(yùn)動(dòng)到直線OM上的任何位置(不包括點(diǎn)O、M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請(qǐng)利用所學(xué)知識(shí)找出并證明;如果沒有,請(qǐng)說明理由.
【答案】(1)M(0,6),B(2,0),A(6,6);(2)AB=2;(3)①當(dāng)點(diǎn)P在線段OM上時(shí),結(jié)論:∠APB+∠PBO=∠PAM;理由見解析;②當(dāng)點(diǎn)P在MO的延長線上時(shí),結(jié)論:∠APB+∠PBO=∠PAM.理由見解析;③當(dāng)點(diǎn)P在OM的延長線上時(shí),結(jié)論:∠PBO=∠PAM+∠APB.理由見解析;
【解析】
(1)利用非負(fù)數(shù)的性質(zhì),求出a、b、c即可解決問題;
(2)設(shè)P(0,m).根據(jù)S△PAB=S梯形AMOB-S△APM-S△PBO,構(gòu)建方程即可解決問題;
(3)分三種情形,分別畫出圖形解決問題即可.
(1)∵(b-2)2+|a-6|+=0,
又∵(b-2)2,≥0,|a-6|≥0,≥0,
∴a=6,b=2,c=6.
∴M(0,6),B(2,0),A(6,6),
(2)設(shè)P(0,m).
∵S△PAB=13,四邊形AMOB是直角梯形,
∴(6+2)6-m2-(6-m)6=13,
∴m=,
∴P(0,),
AB==2.
(3)①如圖2-1中,當(dāng)點(diǎn)P在線段OM上時(shí),結(jié)論:∠APB+∠PBO=∠PAM;
理由:作PQ∥AM,則PQ∥AM∥ON,
∴∠1=∠PAM,∠2=∠PBO,
∴∠1+∠2=∠PAM+∠PBO,
即∠APB=∠PAM+∠PBO,
∠APB+∠PBO=∠PAM;
②如圖2-2中所示,當(dāng)點(diǎn)P在MO的延長線上時(shí),結(jié)論:∠APB+∠PBO=∠PAM.
理由:∵AM∥OB,
∴∠PAM=∠3,
∵∠3=∠APB+∠PBO,
∴∠APB+∠PBO=∠PAM.
③如圖2-3中,當(dāng)點(diǎn)P在OM的延長線上時(shí),結(jié)論:∠PBO=∠PAM+∠APB.
理由:∵AM∥OB,
∴∠4=∠PBO,
∵∠4=∠PAM+∠APB,
∴∠PBO=∠PAM+∠APB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由幾個(gè)相同的小正方體搭成的幾何體,
(1)搭成這個(gè)幾何體需要 個(gè)小正方體;
(2)畫出這個(gè)幾何體的主視圖和左視圖;
(3)在保持主視圖和左視圖不變的情況下,最多可以拿掉n個(gè)小正方體,則n= ,請(qǐng)?jiān)趥溆脠D中畫出拿掉n個(gè)小正方體后新的幾何體的俯視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=x2+2x﹣3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線C2:y=ax2+bx+c經(jīng)過點(diǎn)B,與x軸的另一個(gè)交點(diǎn)為E(﹣4,0),與y軸交于點(diǎn)D(0,2).
(1)求拋物線C2的解析式;
(2)設(shè)點(diǎn)P為線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過點(diǎn)P作x軸的垂線交拋物線C1于點(diǎn)M,交拋物線C2于點(diǎn)N.
①當(dāng)四邊形AMBN的面積最大時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)CM=DN≠0時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,D為線段BC上一點(diǎn),E為線段AC上一點(diǎn),且AD=AE.
(1)若∠ABC=60°,∠ADE=70°,求∠BAD與∠CDE的度數(shù);
(2)設(shè)∠BAD=α,∠CDE=β,試寫出α、β之間的關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=2x2﹣x﹣3.
(1)求函數(shù)圖象的頂點(diǎn)坐標(biāo),與坐標(biāo)軸交點(diǎn)坐標(biāo),并畫出函數(shù)大致圖象;
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),y<0?當(dāng)x為何值時(shí)y>﹣3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2.
(1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長度,求點(diǎn)B所對(duì)應(yīng)的數(shù);
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過多長時(shí)間A,B兩點(diǎn)相距4個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8 cm,BC=6 cm,P,Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為1 cm,點(diǎn)Q從點(diǎn)B開始沿B→C方向運(yùn)動(dòng),且速度為2 cm/s,它們同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t s.
(1)運(yùn)動(dòng)幾秒時(shí),△APC是等腰三角形?
(2)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(如圖),它符合規(guī)則:相對(duì)兩面的點(diǎn)數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點(diǎn)A、B,設(shè)M是OB上一點(diǎn),若將△ABM沿AM折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)B′處.求:
(1)點(diǎn)B′的坐標(biāo);
(2)直線AM所對(duì)應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com