【題目】如圖,△ABC中,AB=AC,∠BAC=40°,將△ABC繞點A按逆時針方向旋轉100°.得到△ADE,連接BD,CE交于點F.
(1)求證:△ABD≌△ACE;
(2)求證:四邊形ABFE是菱形.
【答案】(1)證明:∵ABC繞點A按逆時針方向旋轉100°,
∴∠BAC=∠DAE=40°,
∴∠BAD=∠CAE=100°,
又∵AB=AC,
∴AB=AC=AD=AE,
在△ABD與△ACE中,
,
∴△ABD≌△ACE(SAS).
(2)證明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,
∴∠BAE=∠BFE,
∴四邊形ABFE是平行四邊形,
∵AB=AE,
∴平行四邊形ABFE是菱形.
【解析】(1)根據旋轉角求出∠BAD=∠CAE,然后利用“邊角邊”證明△ABD和△ACE全等.
(2)根據對角相等的四邊形是平行四邊形,可證得四邊形ABFE是平行四邊形,然后依據鄰邊相等的平行四邊形是菱形,即可證得.
【考點精析】根據題目的已知條件,利用菱形的判定方法的相關知識可以得到問題的答案,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.平移不改變圖形的形狀和大小,而旋轉則改變圖形的形狀和大小
B.平移和旋轉的共同點是改變了圖形的位置,而圖形的形狀大小沒有變化
C.圖形可以向某方向平移一定距離,也可以向某方向旋轉一定距離
D.在平移和旋轉圖形中,對應角相等,對應線段相等且平行
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,則∠E與∠F之間滿足的數量關系是( )
A. ∠E=∠FB. ∠E+∠F=180°
C. 3∠E+∠F=360°D. 2∠E-∠F=90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別相交于A、B兩點,與直線交于點C,且點C的橫坐標為1.
(1)求b的值;
(2)點,在直線上,若,則__________.
(3)若動點P在線段OC上(點P不與點C重合),連接PA,PB,設點P的橫坐標為m,△PAB的面積為S,求S關于m的函數關系式(不要求寫出自變量m的取值范圍).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】興華商店準備購進甲、乙兩種書包出售,每個甲種書包的進價比每個乙種書包的進價多20元,購進3個甲種書包的費用和購進4個乙種書包的費用相等,現計劃購進兩種書包共100個,其中乙種書包不少于35個.
(1)甲種書包進價為__________元/個,乙種書包進價為__________元/個;
(2)若甲種書包每個售價120元,乙種書包每個售價90元,且購進這100個書包的費用不低于7200元,如果這100個書包都可售完,那么興華商店如何進貨才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在菱形中,.
(1)如圖1,點為線段的中點,連接,.若,求線段的長.
(2)如圖2,為線段上一點(不與,重合),以為邊向上構造等邊三角形,線段與交于點,連接,,為線段的中點.連接,判斷與的數量關系,并證明你的結論.
(3)在(2)的條件下,若,請你直接寫出的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】育才中學開展了“孝敬父母,從家務事做起”活動,活動后期隨機調查了八年級部分學生一周在家做家務的時間,并將結果繪制成如下兩幅尚不完整的統(tǒng)計圖
請你根據統(tǒng)計圖提供的信息回答下列問題:
(1)本次調查的學生總數為 人,被調查學生做家務時間的中位數是 小時,眾數是 小時;
(2)請你補全條形統(tǒng)計圖;
(3)若全校八年級共有學生1500人,估計八年級一周做家務的時間為4小時的學生有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com