【題目】開學(xué)初,小芳和小亮去學(xué)校商店購買學(xué)習(xí)用品,小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價格比每本筆記本的價格少2

(1)求每支鋼筆和每本筆記本各是多少元;

(2)學(xué)校運(yùn)動會后,班主任再次購買上述價格的鋼筆和筆記本共50件作為獎品,獎勵給校運(yùn)動會中表現(xiàn)突出的同學(xué),總費(fèi)用不超過200元.請問至少要買多少支鋼筆?

【答案】(1)每支鋼筆3元,每本筆記本5元;(2)至少要買25支鋼筆.

【解析】

(1)根據(jù)小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價格比每本筆記本的價鉻少2元,可以得到相應(yīng)的方程,解方程即可求得每支鋼筆和每本筆記本各是多少元;
(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以得到小芳至少要買多少支鋼筆.

解:(1)設(shè)每支鋼筆x元,則每本筆記本(x+2)元,

根據(jù)題意得: =2×,

解得:x=3,

經(jīng)檢驗(yàn),x=3是所列分式方程的解且符合題意,

∴x+2=5.

答:每支鋼筆3元,每本筆記本5元.

(2)設(shè)要買m支鋼筆,則要買(50﹣m)本筆記本,

根據(jù)題意得:3m+5(50﹣m)≤200,

解得:m≥25.

答:至少要買25支鋼筆.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分線.若P,Q分別是ADAC上的動點(diǎn),則PC+PQ的最小值是( )

A. 2.4 B. 4.8 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCCED均為等邊三角形,且B,CD三點(diǎn)共線.線段BE,AD相交于點(diǎn)O,AFBE于點(diǎn)F.若OF=1,則AF的長為( 。

A. 1 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形ABCD中,∠B=60°,P、Q同時從B出發(fā),以每秒1個單位長度分別沿B→A→D→C和B→C→D方向運(yùn)動至相遇時停止.設(shè)運(yùn)動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是( )

A.當(dāng)t=4秒時,S=4
B.AD=4
C.當(dāng)4≤t≤8時,S=2 t
D.當(dāng)t=9秒時,BP平分梯形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)PBC上一點(diǎn),PR⊥AB,PS⊥AC,垂足分別為點(diǎn)R、S,PR=PS,點(diǎn)QAC上一點(diǎn),且AQ=PQ,

(1)求證:QP∥AR;

(2)AR、AS相等嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初中學(xué)生帶手機(jī)上學(xué),給學(xué)生帶來了方便,同時也帶來了一些負(fù)面影響.針對這種現(xiàn)象,某校九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了若干名家長對“初中學(xué)生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計整理并制作了如圖的統(tǒng)計圖:
(1)這次調(diào)查的家長總?cè)藬?shù)為人,表示“無所謂”的家長人數(shù)為人;
(2)隨機(jī)抽查一個接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是;
(3)求扇形統(tǒng)計圖中表示“不贊同”的扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B兩點(diǎn),與y軸交于C點(diǎn),其對稱軸為直線x=1.

(1)直接寫出拋物線的解析式:;
(2)把線段AC沿x軸向右平移,設(shè)平移后A、C的對應(yīng)點(diǎn)分別為A′、C′,當(dāng)C′落在拋物線上時,求A′、C′的坐標(biāo);
(3)除(2)中的點(diǎn)A′、C′外,在x軸和拋物線上是否還分別存在點(diǎn)E、F,使得以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,求出E、F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2 ,∠C=120°,以點(diǎn)C為圓心的 與AB,AD分別相切于點(diǎn)G,H,與BC,CD分別相交于點(diǎn)E,F(xiàn).若用扇形CEF作一個圓錐的側(cè)面,則這個圓錐的高是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2x2﹣2 x+1與坐標(biāo)軸的交點(diǎn)個數(shù)是

查看答案和解析>>

同步練習(xí)冊答案