【題目】為積極創(chuàng)建全國文明城市,某市對某路口的行人交通違章情況進行了 天的調查,將所得數(shù)據(jù)繪制成如下統(tǒng)計圖(圖2不完整):

請根據(jù)所給信息,解答下列問題:
(1)第 天,這一路口的行人交通違章次數(shù)是多少次?這 天中,行人交通違章 次的有多少天?
(2)請把圖2中的頻數(shù)直方圖補充完整;
(3)通過宣傳教育后,行人的交通違章次數(shù)明顯減少.經(jīng)對這一路口的再次調查發(fā)現(xiàn),平均每天的行人交通違章次數(shù)比第一次調查時減少了 次,求通過宣傳教育后,這一路口平均每天還出現(xiàn)多少次行人的交通違章?

【答案】
(1)

解:依題可得:第7天,這一路口的行人交通違章次數(shù)是8次.

這20天中,行人交通違章6次的有5天.


(2)

解:補全的頻數(shù)直方圖如圖所示:


(3)

解:第一次調查,平均每天行人的交通違章次數(shù)為:

=7(次).

∵7-4=3(次)

∴通過宣傳教育后,這一路口平均每天還出現(xiàn)3次行人的交通違章.


【解析】(1)直接根據(jù)折線統(tǒng)計圖可讀出數(shù)據(jù).
(2)求出8次的天數(shù),補全圖形即可.
(3)求出這20天的平均數(shù),然后再算出交通違章次數(shù)即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】深圳市民中心廣場上有旗桿如圖①所示,某學校數(shù)學興趣小組測量了該旗桿的高度.如圖②,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為16米,落在斜坡上的影長CD為8米,AB⊥BC;同一時刻,太陽光線與水平面的夾角為 45°,1米的標桿EF豎立在斜坡上的影長FG為2米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,C=90°,EAB的中點,且DEAB于點E,∠CAD:∠EAD=1:2,則BBAC的度數(shù)為(

A. 30°,60° B. 32°,58° C. 36°,54° D. 20°,70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)25×26________;

(2)×________

(3)-a2·a5________;

(4)x2·x2m2________;

(5)(-b)2·(-b)3·(-b)5________;

(6)x·x4x5________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知直線 )分別交反比例函數(shù) 在第一象限的圖象于點 , ,過點 軸于點 ,交 的圖象于點 ,連結 .若 是等腰三角形,則 的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形 的對角線 相交于點

(1)如圖1, 分別是 , 上的點, 的延長線相交于點 .若 ,求證: ;
(2)如圖2, 上的點,過點 ,交線段 于點 ,連結 于點 ,交 于點 .若 ,
①求證:
②當 時,求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cmBC=8cm,點DAB的中點.

(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPDCQP全等?

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,B=C,AB=8厘米,BC=6厘米,點DAB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).

1)用的代數(shù)式表示PC的長度;

2)若點P、Q的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由;

3)若點PQ的運動速度不相等,當點Q的運動速度a為多少時,能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D為射線CB上一個動點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,過點EEF∥BC,交直線AC于點F,連接CE.

(1)如圖①,若∠BAC=60°,按邊分類:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如圖②,當點D在線段CB上移動時,判斷△CEF的形狀并證明;

②當點D在線段CB的延長線上移動時,△CEF是什么三角形?請在圖③中畫出相應的圖形,寫出結論并證明.

查看答案和解析>>

同步練習冊答案