【題目】如圖,在△ABC中,BC=10,BC邊上的高為3.將點A繞點B逆時針旋轉(zhuǎn)90°得到點E,繞點C順時針旋轉(zhuǎn)90°得到點D.沿BC翻折得到點F,從而得到一個凸五邊形BFCDE,求五邊形BFCDE的面積.
【答案】80
【解析】
將點C繞點B逆時針旋轉(zhuǎn)90°得到點G,繞點C順時針旋轉(zhuǎn)90°得到點H,連接EG、DH、GH,則△EBG≌△ABC≌△HDC,四邊形BCHG是正方形,六邊形BCDHGE是中心對稱圖形,根據(jù)軸對稱和中心對稱的性質(zhì)得出S△BEG=S△CDH=S△ABC,S四邊形BCDE=S六邊形BCDHGE,然后由S五邊形BFCDE=S四邊形BCDE+S△BFC即可求得.
將點C繞點B逆時針旋轉(zhuǎn)90°得到點G,繞點C順時針旋轉(zhuǎn)90°得到點H,連接EG、DH、GH,則△EBG≌△ABC≌△HDC,四邊形BCHG是正方形,六邊形BCDHGE是中心對稱圖形,
∴四邊形BCDE≌四邊形HGED,
∵S△BEG=S△CDH=S△ABC=×10×3=15=S△BFC,S正方形BCHG=10×10=100,
∴S六邊形BCDHGE=S△BEG+S△CDH+S正方形BCHG=2×15+100=130,
∴S四邊形BCDE=S六邊形BCDHGE=65,
∴S五邊形BFCDE=S四邊形BCDE+S△BFC=65+15=80,
故答案為:80.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD的對角線交于點O,已知△OBC的周長為59厘米,且AD的長是28厘米,兩對角線的差為14厘米,那么較長的一條對角線長是______厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小方格都是邊長為1個單位的小正方形,A、B、C三點都是格點(每個小方格的頂點叫格點),其中A(1,8),B(3,8),C(4,7).
(1)若D(2,3),請在網(wǎng)格圖中畫一個格點△DEF,使△DEF ∽△ABC,且相似比為2∶1;
(2)求∠D的正弦值;
(3)若△ABC外接圓的圓心為P,則點P的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線y=與x軸、y軸分別相交于點A和點B,點C在線段AO上.將△CBO沿BC折疊后,點O恰好落在AB邊上點D處.
(1)直接寫出點A、點B的坐標:
(2)求AC的長;
(3)點P為平面內(nèi)一動點,且滿足以A、B、C、P為頂點的四邊形為平行四邊形,請直接回答:
①符合要求的P點有幾個?
②寫出一個符合要求的P點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標;
(3)請畫出△ABC繞O逆時針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點A3、B3、C3坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點E為AB上一點,AE=2,點F在AD上,將△AEF沿EF折疊,當折疊后點A的對應(yīng)點A'恰好落在BC的垂直平分線上時,折痕EF的長為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于點A,B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM = AN;
(2)若⊙O的半徑R = 3,PA = 9,求OM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com