【題目】(2016廣西省南寧市第24題)如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)、y=﹣x2+2x;C(-1,-3);(2)、證明過(guò)程見(jiàn)解析;(3)、(,0)或(,0)或(﹣1,0)或(5,0)
【解析】
試題分析:(1)、可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點(diǎn)坐標(biāo);(2)、分別過(guò)A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),結(jié)合A、B、C三點(diǎn)的坐標(biāo)可求得∠ABO=∠CBO=45°,可證得結(jié)論;(3)、設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長(zhǎng)度,當(dāng)△MON和△ABC相似時(shí),利用三角形相似的性質(zhì)可得=或=,可求得N點(diǎn)的坐標(biāo).
試題解析:(1)、∵頂點(diǎn)坐標(biāo)為(1,1), ∴設(shè)拋物線解析式為y=a(x﹣1)2+1,
又拋物線過(guò)原點(diǎn), ∴0=a(0﹣1)2+1,解得a=﹣1, ∴拋物線解析式為y=﹣(x﹣1)2+1, 即y=﹣x2+2x,
聯(lián)立拋物線和直線解析式可得,解得或,
∴B(2,0),C(﹣1,﹣3);
(2)、如圖,分別過(guò)A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),
則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3, ∴∠ABO=∠CBO=45°,即∠ABC=90°, ∴△ABC是直角三角形;
(3)、假設(shè)存在滿足條件的點(diǎn)N,設(shè)N(x,0),則M(x,﹣x2+2x),
∴ON=|x|,MN=|﹣x2+2x|, 由(2)在Rt△ABD和Rt△CEB中,可分別求得AB=,BC=3,
∵MN⊥x軸于點(diǎn)N ∴∠ABC=∠MNO=90°, ∴當(dāng)△ABC和△MNO相似時(shí)有=或=,
①當(dāng)=時(shí),則有=,即|x||﹣x+2|=|x|,
∵當(dāng)x=0時(shí)M、O、N不能構(gòu)成三角形, ∴x≠0, ∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,
此時(shí)N點(diǎn)坐標(biāo)為(,0)或(,0);
②當(dāng)=時(shí),則有=,即|x||﹣x+2|=3|x|,
∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1, 此時(shí)N點(diǎn)坐標(biāo)為(﹣1,0)或(5,0),
綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為(,0)或(,0)或(﹣1,0)或(5,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016廣東省梅州市第15題)如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)[來(lái)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)有理數(shù)的平方等于它本身,那么這個(gè)有理數(shù)是( )
A. 0 B. 1 C. ±1 D. 0或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)學(xué)生從點(diǎn)A向北偏東60方向走40米,到達(dá)點(diǎn)B,再?gòu)腂沿北偏西30方向走 30米,到達(dá)點(diǎn)C,此時(shí),恰好在點(diǎn)A的正北方向,則下列說(shuō)法正確的是( )
A. 點(diǎn)A到BC的距離為30米 B. 點(diǎn)B在點(diǎn)C的南偏東30方向40米處
C. 點(diǎn)A在點(diǎn)B的南偏西60方向30米處 D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016湖北省荊州市第25題)閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過(guò)某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問(wèn)題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過(guò)B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.
(1)直接寫(xiě)出點(diǎn)D(m,n)所有的特征線;
(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點(diǎn)P是AB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A′在平行于坐標(biāo)軸的D點(diǎn)的特征線上時(shí),滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為提倡節(jié)約用水,采取分段收費(fèi).若每戶每月用水不超過(guò)20m3 , 每立方米收費(fèi)2元;若用水超過(guò)20m3 , 超過(guò)部分每立方米加收1元.小明家5月份交水費(fèi)64元,則他家該月用水( )m3 .
A.38
B.34
C.28
D.44
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
(1)只有兩個(gè)三角形才能完全重合;
(2)如果兩個(gè)圖形全等,它們的形狀和大小一定都相同;
(3)兩個(gè)正方形一定是全等形;
(4)邊數(shù)相同的圖形一定能互相重合.
其中錯(cuò)誤命題的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com