已知=1,用解析式表示y與x的函數(shù)為________;當(dāng)x=2時,y=________;要使y=-2,則x=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2006年浙江省初中畢業(yè)生學(xué)業(yè)考試嘉興數(shù)學(xué)卷 題型:044
某旅游勝地欲開發(fā)一座景觀山.從山的側(cè)面進(jìn)行堪測,迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點(diǎn)、開口向下,BC所在的拋物線以C為頂點(diǎn)、開口向上.以過山腳(點(diǎn)C)的水平線為x軸、過山頂(點(diǎn)A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-x2+8,BC所在拋物線的解析式為y=(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺階.這種臺階每級的高度為20厘米,長度因坡度的大小而定,但不得小于20厘米,每級臺階的兩端點(diǎn)在坡面上(見圖).
①分別求出前三級臺階的長度(精確到厘米);
②這種臺階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點(diǎn)D)處恰好有一小塊平地,可以用來建造索道站.索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開口向上的拋物線,解析式為y=(x-16)2.試求索道的最大懸空高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線C1的函數(shù)解析式為y=ax2+bx-3a(b<0),若拋物線C1經(jīng)過點(diǎn)(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.
⑴求拋物線C1的頂點(diǎn)坐標(biāo). 新 課 標(biāo) 第 一 網(wǎng)
⑵已知實(shí)數(shù)x>0,請證明x+≥2,并說明x為何值時才會有x+=2.
⑶若將拋物線先向上平移4個單位,再向左平移1個單位后得到拋物線C2,設(shè)A(m,y1),B(n,y2)是C2上的兩個不同點(diǎn),且滿足:∠AOB=90︒,m>0,n<0.請你用含m的表達(dá)式表示出△AOB的面積S,并求出S的最小值及S取最小值時一次函數(shù)OA的函數(shù)解析式.
(參考公式:在平面直角坐標(biāo)系中,若P(x1,y1),Q(x2,y2),則P,Q兩點(diǎn)間的距離為)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆山東省濟(jì)寧地區(qū)九年級第一學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
(1)用因式分解法解方程 x(x+1) =2(x+1) .
(2)已知二次函數(shù)的解析式為y=x2-4x-5,請你判斷此二次函數(shù)的圖象與x軸交點(diǎn)的個數(shù);并指出當(dāng)y隨x的增大而增大時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧地區(qū)九年級第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(1)用因式分解法解方程 x(x+1) =2(x+1) .
(2)已知二次函數(shù)的解析式為y=x2-4x-5,請你判斷此二次函數(shù)的圖象與x軸交點(diǎn)的個數(shù);并指出當(dāng)y隨x的增大而增大時自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com