【題目】最美女教師張麗莉,為搶救兩名學(xué)生,以致雙腿高位截肢,社會(huì)各界紛紛為她捐款,我市某中學(xué)九年級(jí)一班全體同學(xué)參加了捐款活動(dòng),該班同學(xué)捐款情況的部分統(tǒng)計(jì)圖如圖所示:

1)求該班的總?cè)藬?shù);

2)將條形圖補(bǔ)充完整,并寫出捐款總額的眾數(shù);

3)該班平均每人捐款多少元?

【答案】1)該班的總?cè)藬?shù)為50(人);

2)捐款10元的人數(shù) 16人,圖見解析;

3)該班平均每人捐款13.1.

【解析】

1)根據(jù)頻數(shù)、頻率和總量的關(guān)系,用捐款15元的人數(shù)14除以所占的百分比28%,計(jì)算即可得解.

2)用該班總?cè)藬?shù)減去其它四種捐款額的人數(shù),計(jì)算即可求出捐款10元的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖,根據(jù)眾數(shù)的定義,人數(shù)最多即為捐款總額的眾數(shù).

3)根據(jù)加權(quán)平均數(shù)的求解方法列式計(jì)算即可得解.

解:(1)該班的總?cè)藬?shù)為14÷28%=50(人).

2)捐款10元的人數(shù):5091474=5034=16

圖形補(bǔ)充如下圖所示,眾數(shù)是10

35×9+10×16+15×14+20×7+25×4=×655=13.1(元),

該班平均每人捐款13.1元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,

1)若∠ABC=60°,∠ACB=40°,求∠BOC的度數(shù);

2)若∠ABC=60°,OB=4,且△ABC的周長(zhǎng)為16,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)(0,6),ACy軸,且AC=AO,點(diǎn)B,C橫坐標(biāo)相同,點(diǎn)D在AC上,tan∠AOD=,若反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B、D.

(1)求:k及點(diǎn)B坐標(biāo);

(2)將AOD沿著OD折疊,設(shè)頂點(diǎn)A的對(duì)稱點(diǎn)A1的坐標(biāo)是A1(m,n),求:代數(shù)式m+3n的值以及點(diǎn)A1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點(diǎn)MAN的中點(diǎn),過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N。

1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:AD=NE ;

2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,PB⊙O的切線,B為切點(diǎn)圓心OPC,∠P=30°,D為弧BC的中點(diǎn).

(1)求證:PB=BC;

(2)試判斷四邊形BOCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線.

1)若點(diǎn)(-1,a)(,b)都在該直線上,比較ab的大。

2)在平面直角坐標(biāo)系中,求該直線與兩坐標(biāo)軸的交點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長(zhǎng)的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個(gè)地方,豎起竹竿(即AE),這時(shí),他量了一下竹竿的影長(zhǎng)(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長(zhǎng)度(即AB=4米),他又豎起竹竿,這時(shí)竹竿的影長(zhǎng)正好是一根竹竿的長(zhǎng)度(即BD=2米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說:噢,我知道路燈有多高了!同學(xué)們,請(qǐng)你和小明一起解答這個(gè)問題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖①,在ABC中,∠B=C=45°,點(diǎn)DBC邊上,點(diǎn)EAC邊上,且∠ADE=AED,連結(jié)DE.

(1)當(dāng)∠BAD=60°時(shí),求∠CDE的度數(shù);

(2)當(dāng)點(diǎn)DBC(點(diǎn)B、C除外)邊上運(yùn)動(dòng)時(shí),試探究∠BAD與∠CDE的數(shù)量關(guān)系;

(3)深入探究:如圖②,若∠B=C,但∠C≠45°,其它條件不變,試?yán)^續(xù)探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD為正方形,EBC的中點(diǎn),連接AE,過點(diǎn)A作∠AFD,使∠AFD=2EAB,AFCD于點(diǎn)F,如圖①,易證:AF=CD+CF

1)如圖②,當(dāng)四邊形ABCD為矩形時(shí),其他條件不變,線段AF,CD,CF之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并給予證明;

2)如圖③,當(dāng)四邊形ABCD為平行四邊形時(shí),其他條件不變,線段AF,CDCF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.

圖① 圖② 圖③

查看答案和解析>>

同步練習(xí)冊(cè)答案