【題目】矩形紙片ABCD,AB=7,BC=4,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E、F,則EF=__________________.
【答案】或
【解析】
如圖1,當(dāng)點P在CD上時,由折疊的性質(zhì)得到四邊形PFBE是正方形,EF過點C,根據(jù)勾股定理即可得到結(jié)果;如圖2當(dāng)點P在AD上時,過E作EQ⊥AB于Q,根據(jù)勾股定理得到PB的長,推出△ABP∽△EFQ,列比例式即可得到結(jié)果.
如圖1,當(dāng)點P在CD上時,
∵PD=3,CD=AB=7,
∴CP=4,
∵EF垂直平分PB,
∴四邊形PFBE是正方形,EF過點C,
∴EF=
如圖2,當(dāng)點P在AD上時,過E作EQ⊥AB于Q,
∵PD=3,AD=4,
∴AP=1,
∴PB=
∵EF垂直平分PB,
∴∠1=∠2,
∵∠A=∠EQF,
∴△ABP∽△EFQ,
∴,即
解得EF=
綜上所述:EF長為或
故答案為:或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A城有肥料200t,B城有肥料300t.現(xiàn)要把這些肥料全部運往C,D兩鄉(xiāng),從A城往C,D兩鄉(xiāng)運肥料的費用分別為20元/t和25元/t;從B城往C,D兩鄉(xiāng)運肥料的費用分別為15元/t和24元/t.現(xiàn)C鄉(xiāng)需要肥料240t,D鄉(xiāng)需要肥料260t.設(shè)從A城調(diào)往C鄉(xiāng)肥料xt.
(1)根據(jù)題意,填寫下表:
(2)設(shè)調(diào)運肥料的總運費y(單位:元)是x的函數(shù),求y與x的函數(shù)解析式;
(3)請根據(jù)(2)給出完成調(diào)運任務(wù)總費用最少的調(diào)運方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,是的直徑,點在上,且,點是外一點,與相切于點,連接,過點作交于點,連接交于點.
(1)求證:;
(2)求證:是的切線;
(3)若,,連接,求的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝店準(zhǔn)備購進甲乙兩種服裝共100件,費用不得超過7500元.甲種服裝每件進價80元,每件售價120元;乙種服裝每件進價60元,每件售價90元.
(Ⅰ)設(shè)購進甲種服裝件,試填寫下表.
表一
購進甲種服裝的數(shù)量/件 | 10 | 20 | … | |
購進甲種服裝所用費用/元 | 800 | 1600 | … | |
購進乙種服裝所用費用/元 | 5400 | … |
表二
購進甲種服裝的數(shù)量/件 | 10 | 20 | … | |
甲種服裝獲得的利潤/元 | 800 | … | ||
乙種服裝獲得的利潤/元 | 2700 | 2400 | … |
(Ⅱ)給出能夠獲得最大利潤的進貨方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A坐標(biāo)為(﹣2,0),∠OAB=90°,∠AOB=30°,將△OAB繞點O按順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α≤150°),在旋轉(zhuǎn)過程中,點A、B的對應(yīng)點分別為點A′、B′.
(1)如圖1,當(dāng)α=60°時,直接寫出點A′ 、B′ 的坐標(biāo);
(2)如圖2,當(dāng)α=135°時,過點B′作AB的平行線交AA′延長線于點C,連接BC,AB′.
①判斷四邊形AB′CB的形狀,并說明理由,
②求此時點A′和點B′的坐標(biāo);
(3)當(dāng)α由30°旋轉(zhuǎn)到150°時,(2)中的線段B′C也隨之移動,請求出B′C所掃過的區(qū)域的面積?(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上的點,連接EF.
(1)如圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△EDF,AE的長為 ;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE=,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交△ABC的邊AC于D、BC于E,過D作⊙O的切線交BC于F,交BA延長線于G,且DF⊥BC.
(1)求證:BA=BC;
(2)若AG=2,cosB=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數(shù);
(2)A,C兩港之間的距離為多少km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去…若點A(,0),B(0,2),則點B2018的坐標(biāo)為( 。
A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com