【題目】小強是校學生會體育部部長,他想了解現在同學們更喜歡什么球類運動,以便學生會組織受歡迎的比賽.于是他設計了調查問卷,在全校每個班都隨機選取了一定數量的學生進行調查,調查問卷如下:
調查問卷
你最喜歡的球類運動是( )(單選)
A、籃球B、足球C、排球D、乒乓球E、羽毛球F、其他
調查問卷
你最喜歡的球類運動是( )(單選)
A、籃球B、足球C、排球D、乒乓球E、羽毛球F、其他
小強根據統(tǒng)計數據制作的各活動小組人數分布情況的統(tǒng)計表和扇形統(tǒng)計圖如下
(1)請你寫出統(tǒng)計表中空缺部分的人數m= , n= .
(2)在扇形統(tǒng)計圖中,羽毛球所對應的扇形圓心角等于 .
(3)請你根據調查結果,給小強部長簡要提出兩條合理化的建議.
【答案】(1)m=63,n=96;(2)43.2;(3)①多組織執(zhí)行乒乓球比賽 、谏俳M織排球比賽
【解析】
(1)根據籃球人數占總人數23%求出被調查的總人數,將總人數分別乘以足球和乒乓球的百分比,可得m、n的值;
(2)根據羽毛球所對應扇形的圓心角等于羽毛球人數占總人數的比例乘以360°可得;
(3)根據喜歡不同球類人數多少可選擇多開展相應的活動,合理即可.
(1)根據題意知,被調查的學生一共有:69÷23%=300人,
則選擇足球的人數m=300×21%=63人,選擇乒乓球的人數n=300-69-63-27-36-9=96人;
故答案為:63,96;
(2)羽毛球所對應扇形的圓心角為:×360°=43.2°;
(3)因為喜歡乒乓球和羽毛球的人數最多,所以①多組織執(zhí)行乒乓球比賽;②少組織排球比賽.
故答案為:(1)63,96;(2)43.2°.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①BE= AC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.
(1)如圖,一束光線射到平面鏡上,被反射到平面鏡上,又被反射,若被反射出的光線與光線平行,且,則_________,________.
(2)在(1)中,若,則_______;若,則________;
(3)由(1)、(2),請你猜想:當兩平面鏡、的夾角________時,可以使任何射到平面鏡上的光線,經過平面鏡、的兩次反射后,入射光線與反射光線平行.請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一個直角三角板中30°的銳角頂點與另一個直角三角板的直角頂點疊放一起.(注:∠ACB與∠DEC是直角,∠A=45°,∠DEC=30°).
(1)如圖①,若點C、B、D在一條直線上,求∠ACE的度數;
(2)如圖②,將直角三角板CDE繞點c逆時針方向轉動到某個位置,若恰好平分∠DCE,求∠BCD的度數;
(3)如圖③若∠DEC始終在∠ACB的內部,分別作射線CM平分∠BCD,射線CN平分∠ACE.如果三角板DCE在∠ACB內繞點C任意轉動,∠MCN的度數是否發(fā)生變化?如果不變,求出它的度數,如果變化,說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度數;
(2)若∠BOF=36°,求∠AOC的度數;
(3)若|∠AOC﹣∠BOF|=α°,請直接寫出∠AOC和∠BOF的度數.(用含的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標為(2,0),BC=6,∠BCD=60°,點E是AB上一點,AE=3EB,⊙P過D,O,C三點,拋物線y=ax2+bx+c過點D,B,C三點.
(1)求拋物線的解析式;
(2)說明ED是⊙P的切線,若將△ADE繞點D逆時針旋轉90°,E點的對應點E′會落在拋物線上嗎?請說明理由;
(3)若點M為此拋物線的頂點,平面上是否存在點N,使得以點B,D,M,N為頂點的四邊形為平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com