(2000•上海)如果等腰三角形底邊上的高等于腰長的一半,那么這個等腰三角形的頂角等于    度.
【答案】分析:根據(jù)直角三角形的性質(zhì)可求得等腰三角形的底角的度數(shù),根據(jù)三角形內(nèi)角和定理即可求得其頂角的度數(shù).
解答:解:∵在直角△ABD中,AD=AB,
∴∠B=30°,
∵AB=AC,
∴∠C=30°,
∴∠BAC=120°.
點評:本題主要考查了等腰三角形的性質(zhì),直角三角形的性質(zhì)及三角形內(nèi)角和定理的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(2000•上海)如圖,在半徑為6,圓心角為90°的扇形OAB的弧AB上,有一個動點P,PH⊥OA,垂足為H,△OPH的重心為G.
(1)當(dāng)點P在AB上運動時,線段GO、GP、GH中,有無長度保持不變的線段?如果有,請指出這樣的線段,并求出相應(yīng)的長度;
(2)設(shè)PH=x,GP=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△PGH是等腰三角形,試求出線段PH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年上海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•上海)如圖,在半徑為6,圓心角為90°的扇形OAB的弧AB上,有一個動點P,PH⊥OA,垂足為H,△OPH的重心為G.
(1)當(dāng)點P在AB上運動時,線段GO、GP、GH中,有無長度保持不變的線段?如果有,請指出這樣的線段,并求出相應(yīng)的長度;
(2)設(shè)PH=x,GP=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△PGH是等腰三角形,試求出線段PH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(2000•上海)如圖,公路AB和公路CD在點P處交會,且∠APC=45°,點Q處有一所小學(xué),PQ=,假設(shè)拖拉機行駛時,周圍130m以內(nèi)會受到噪聲的影響,那么拖拉機在公路AB上沿PA方向行駛時,學(xué)校是否會受到噪聲影響?請說明理由;若受影響,已知拖拉機的速度為36km/h,那么學(xué)校受影響的時間為多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(2000•上海)如圖,在△ABC中,AB=AC,E是AB的中點.以點E為圓心,EB為半徑畫弧,交BC于點D,連接ED,井延長ED到點F,使DF=DE,連接FC.求證:∠F=∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年上海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•上海)如圖,公路AB和公路CD在點P處交會,且∠APC=45°,點Q處有一所小學(xué),PQ=,假設(shè)拖拉機行駛時,周圍130m以內(nèi)會受到噪聲的影響,那么拖拉機在公路AB上沿PA方向行駛時,學(xué)校是否會受到噪聲影響?請說明理由;若受影響,已知拖拉機的速度為36km/h,那么學(xué)校受影響的時間為多少秒?

查看答案和解析>>

同步練習(xí)冊答案