【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿著CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)x為何值時(shí),PQ∥BC;
(2)是否存在某一時(shí)刻,使△APQ∽△CQB?若存在,求出此時(shí)AP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
【答案】(1)即當(dāng)x=時(shí),PQ∥BC;(2)綜上所述,當(dāng)AP的長(zhǎng)為cm或20 cm時(shí),△APQ與△CQB相似.
【解析】
(1)當(dāng)PQ∥BC 時(shí),根據(jù)平行線分線段成比例定理,可得出關(guān)于AP,PQ,AB,AC的比例關(guān)系式,我們可根據(jù)P,Q的速度,用時(shí)間x表示出AP,AQ,然后根據(jù)得出的關(guān)系式求出x的值.
(2)本題要分兩種情況進(jìn)行討論.已知了∠A 和∠C 對(duì)應(yīng)相等,那么就要分成AP和CQ對(duì)應(yīng)成比例以及AP和BC對(duì)應(yīng)成比例兩種情況來(lái)求x的值.
解:(1)∵PQ∥BC,∴∠AQP=∠C.
又∵∠A=∠A,
∴△APQ∽△ABC,
∴=,
即=,
解得x=.
即當(dāng)x=時(shí),PQ∥BC.
(2)能相似.
∵AB=BC,
∴∠A=∠C,
∴△APQ和△CQB相似可能有以下兩種情況:
①△APQ∽△CQB,可得=,
即=,
解得x=.
經(jīng)檢驗(yàn),x=是上述方程的解.
∴當(dāng)AP=4x=cm時(shí),△APQ∽△CQB;
②△APQ∽△CBQ,可得=,
即=,
解得x=5或x=-10(舍去).
經(jīng)檢驗(yàn),x=5是上述方程的解.
∴當(dāng)AP=4x=20 cm時(shí),△APQ∽△CBQ.
綜上所述,當(dāng)AP的長(zhǎng)為cm或20 cm時(shí),△APQ與△CQB相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在A城正西方向600km的B處,以每小時(shí)200km的速度向北偏東60°的方向移動(dòng),距臺(tái)風(fēng)中心500km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)A城是否受到這次臺(tái)風(fēng)的影響?為什么?
(2)若A城受到這次臺(tái)風(fēng)的影響,那么A城遭受這次臺(tái)風(fēng)影響有多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以元的價(jià)格銷(xiāo)售,平均每天銷(xiāo)售箱,價(jià)格每提高元,平均每天少銷(xiāo)售箱.
求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售價(jià)(元/箱)之間的函數(shù)關(guān)系式.當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分別交AB、BC于點(diǎn)D、E,AP平分∠BAC,與DE的延長(zhǎng)線交于點(diǎn)P.
(1)求PD的長(zhǎng)度;
(2)連結(jié)PC,求PC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直角三角形ABC中,∠C=90°,CB=1,∠BAC=30°.
(1)求AB、AC的長(zhǎng);
(2)如圖2,將AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AE,將AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AD.
①連接CE,BD.求證:BD=EC;
②連接DE交AB于F,請(qǐng)你作出符合題意的圖形并求出DE的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,將繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,則點(diǎn)的坐標(biāo)是( )
A. (-3,4) B. (-4,3) C. (3,-4) D. (4,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的邊位于直線上,,,,若由現(xiàn)在的位置向右無(wú)滑動(dòng)地旋轉(zhuǎn),當(dāng)第次落在直線上時(shí),點(diǎn)所經(jīng)過(guò)的路線的長(zhǎng)為________(結(jié)果用含有的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.
(1)若∠C=40°,求∠BAD的度數(shù);
(2)若AC=5,DC=4,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知銳角∠AOB及一點(diǎn)P.
(1)過(guò)點(diǎn)P作OA、OB的垂線,垂足分別是M、N;(只作圖,保留作圖痕跡,不寫(xiě)作法)
(2)猜想∠MPN與∠AOB之間的關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com