【題目】已知AB⊙O的直徑,AB=4,點C,點D⊙O上,CD=2,直線AD,BC交于點E.

(1)如圖,若點E在⊙O外,求∠AEB的度數(shù).

(2)DC∥AB,試求出△ABE的面積.

【答案】(1)60°;(2)4.

【解析】

(1)如圖1,連接OC、OD,先證明OCD為等邊三角形得到∠COD=60°,利用圓周角定理得到∠CBD=30°,ADB=90°,然后利用互余計算出∠AEB的度數(shù);

(2)先證明OBC為等邊三角形,再證明ABE是等邊三角形,然后根據(jù)再計算面積即可.

(1)如圖1,連接OC、OD,

CD=2,OC=OD=2,

∴△OCD為等邊三角形,

∴∠COD=60°,

∴∠CBD=COD=30°,

AB為直徑,

∴∠ADB=90°,

∴∠AEB=90°﹣DBE=90°﹣30°=60°;

(2)DCAB,

∴∠OCD=DCO=60°,

∴△OBC為等邊三角形,

∴∠EBA=60°,

又∵∠AEB=60°,

∴△ABE是等邊三角形,

AE=AB=BE=4,

∴在RtABD中,,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為;足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,P是對角線BD上的一點,點EAD的延長線上,且PE=PAPECDF

(1)求證: PC=PE;

(2)求∠CPE的度數(shù);

(3)如圖②,把正方形ABCD改為菱形ABCD,其它條件不變,若∠ABC=65°,則∠CPE=________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于N,連接BM,DN.

(1)求證:四邊形BMDN是菱形;

(2)若AB=2,AD=4,求MD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=70°,⊙OCA、CB分別于點A和點B,則弦AB所對的圓周角的度數(shù)為( 。

A. 110° B. 55° C. 55°或 110° D. 55 125°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中有一小島A,它周圍8海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在B點測得小島A在北偏東60°方向上,航行12海里到達D點,這時測得小島A在北偏東30°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,ECD邊的中點,,MAE的中點,過點M作直線分別與AD、BC相交于點P、Q.若PQ=AE,則AP等于__________cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司投資新建了一商場,共有商鋪30.據(jù)預(yù)測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000,少租出商鋪1.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000.

1)當每間商鋪的年租金定為13萬元時,能租出多少間?

2)當每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

同步練習冊答案