【題目】如圖,內(nèi)接于,的中點,且,分別是,邊上的高,則的大小_________(度).

【答案】

【解析】

連接BO,CO,根據(jù)圓周角定理得到∠BODBOC=∠BAC60°,求得∠AOB=∠AODBOD106°,根據(jù)垂徑定理得到ODBC,求得AEOD,根據(jù)平行線的性質(zhì)得到∠OAE180°AOD14°,求出∠BAE即可得到結(jié)論.

解:連接BOCO,

∵∠BAC60°

∴∠BODBOC=∠BAC60°,

∵∠AOD166°

∴∠AOB=∠AODBOD106°,∠BAO180°AOB)=37°

由題意得:AEBC,ODBC,

AEOD

∴∠OAE180°AOD14°,

∴∠BAE=∠BAOOAE23°,

∴∠ABE90°23°67°,

∴∠BCF90°67°23°

故答案為:23.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年北疆承辦了世界園藝博覽會,某商店為了抓住博覽會的商機(jī),決定購買A.B兩種世園會紀(jì)念品,若購進(jìn)A中紀(jì)念品20件,B種紀(jì)念品10件,需要2000元;若購進(jìn)A中紀(jì)念品8件,B種紀(jì)念品6件,需要1100元.

(1)求購進(jìn)A.B兩種紀(jì)念品每件各需要多少元?

(2)若該商店決定拿出10000元全部用來購進(jìn)這兩種紀(jì)念品,考慮到市場需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種的6倍,且少于B種紀(jì)念品數(shù)量的8倍,設(shè)購進(jìn)B種紀(jì)念品a件,則該商店共有幾種進(jìn)貨方案?

(3)在第(2)問的條件下,若銷售每件A種紀(jì)念品可獲利潤30元,每件B種紀(jì)念品可獲利潤40元,設(shè)總利潤為y元,請寫出總利潤y(元)與a(個)的函數(shù)關(guān)系式,并根據(jù)函數(shù)關(guān)系式說明總利潤最高時的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),給定不在同一直線上的點A,BC,如圖所示.O到點A,B,C的距離均等于a(a為常數(shù)),到點O的距離等于a的所有點組成圖形G,∠ABC的平分線交圖形G于點D,連接AD,CD.

(1)求證:AD=CD.

(2)過點DDEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點M,連接CM.AD=CM,判斷直線DE與圖形G的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BE,CD分別是邊AC、AB上的中線,BECD相交于點OBE6,則OE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖像經(jīng)過點,與軸相交于點,與軸相交于點,二次函數(shù)的圖像經(jīng)過點和點,頂點為,對稱軸與一次函數(shù)的圖像相交于點。

1)求一次函數(shù)的解析式以及點,點的坐標(biāo);

2)求頂點的坐標(biāo);

3)在軸上求一點,使得相似。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;

2)分別以點C,D為圓心,CD長為半徑作弧,交于點MN;

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB6,AC8.動點EF同時分別從點A,B出發(fā),分別沿著射線AC和射線BC的方向均以每秒1個單位的速度運(yùn)動,連接EF,以EF為直徑作⊙O交射線BC于點M,連接EM,設(shè)運(yùn)動的時間為tt0).

1)當(dāng)點E在線段AC上時,用關(guān)于t的代數(shù)式表示CE   ,CM   .(直接寫出結(jié)果)

2)在整個運(yùn)動過程中,當(dāng)t為何值時,以點E、FM為頂點的三角形與以點A、B、C為頂點的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根

(1)求線段BC的長度;

(2)試問:直線AC與直線AB是否垂直?請說明理由;

(3)若點D在直線AC上,且DB=DC,求點D的坐標(biāo);

(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點坐標(biāo)分別為A1,1),B4,2),C3,5).

1)求ABC的面積;

2)在圖中畫出ABC繞點A逆時針旋轉(zhuǎn)90°得到的A'B'C',并寫出點C的對應(yīng)點C'的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案