【題目】1)在如圖所示的平面直角坐標(biāo)系中,依次連接下列各點: A(-50),B14),C3,3),D1,0),E3,-3),F1,-4).

2)請你在如圖所示的方格紙上按照如下要求設(shè)計直角三角形:

①使它的三邊中有一邊邊長不是有理數(shù);

②使它的三邊中有兩邊邊長不是有理數(shù);

③使它的三邊邊長都不是有理數(shù).

【答案】1)詳見解析;(2)①詳見解析;②詳見解析;③詳見解析

【解析】

1)根據(jù)坐標(biāo)的確定方法:分別讀出各點的縱橫坐標(biāo),即可得到各個點的坐標(biāo),再依次連接即可;

2)①根據(jù)有理數(shù)和無理數(shù)的定義,勾股定理及格點三角形的特點解答;

②根據(jù)有理數(shù)和無理數(shù)的定義,勾股定理及格點三角形的特點解答;

③根據(jù)有理數(shù)和無理數(shù)的定義,勾股定理及格點三角形的特點解答.

1)見下圖

2)解:①△ABC是所求作的三角形;
②△PHG是所求作的三角形;
③△DEF是所求作的三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與坐標(biāo)軸分別交于A、B兩點,OA=8OB=6.動點PO點出發(fā),沿路線O→A→B以每秒2個單位長度的速度運動,到達B點時運動停止.

(1)A點的坐標(biāo)為_____,B兩點的坐標(biāo)為______;

(2)當(dāng)點POA上,且BP平分∠OBA時,則此時點P的坐標(biāo)為______;

(3)設(shè)點P的運動時間為t(0≤t≤4),△BPA的面積為S,求St之間的函數(shù)關(guān)系式:并直接寫出當(dāng)S=8時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校七年級4個班共180人的體質(zhì)健康情況,從各班分別抽取同樣數(shù)量的男生和女生組成一個樣本,如圖是根據(jù)樣本繪制的條形圖和扇形圖.

(1)本次抽查的樣本容量是
(2)請補全條形圖和扇形圖中的百分數(shù);
(3)請你估計全校七年級共有多少人優(yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,運算結(jié)果正確的是( )
A.(﹣1)3+(﹣3.14)0+21=﹣
B.2x2=
C. =﹣4
D.a2a3=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點D是等邊ABC的邊BC上一點,以AD為邊向右作等邊ADF,DFAC交于點N

1)如圖①,當(dāng)ADBC時,請說明DFAC的理由;

2)如圖②,當(dāng)點DBC上移動時,以AD為邊再向左作等邊ADEDEAB交于點M,試問線段AMAN有什么數(shù)量關(guān)系?請說明你的理由;

3)在(2)的基礎(chǔ)上,若等邊ABC的邊長為2,直接寫出DM+DN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解青少年形體情況,現(xiàn)隨機抽查了若干名初中學(xué)生坐姿、站姿、走姿的好壞情況(如果一個學(xué)生有一種以上不良姿勢,以他最突出的一種作記載),并將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息解答下列問題:

(1)求這次被抽查形體測評的學(xué)生一共有多少人?
(2)求在被調(diào)查的學(xué)生中三姿良好的學(xué)生人數(shù),并將條形統(tǒng)計圖補充完整;
(3)若全市有5萬名初中生,那么估計全市初中生中,坐姿和站姿不良的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面內(nèi)的三個點A(1,3),B(3,1),O(0,0),把ABO向下平移3個單位再向右平2個單位后得DEF.

(1)直接寫出A、B、O三個對應(yīng)點D、E、F的坐標(biāo);

(2)求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點E,F(xiàn)為BE上一點,連接DF,過F作FG⊥DF交BC于點G,連接BD交FG于點H,若FD=FG,BF=3 ,BG=4,則GH的長為

查看答案和解析>>

同步練習(xí)冊答案