【題目】如圖,正五邊形的邊長為2,連接對角線AD、BE、CE,線段AD分別與BE和CE相交于點M、N,給出下列結論:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正確的結論是_________(把你認為正確結論的序號都填上).

【答案】①②③

【解析】∵∠BAE=AED=108°.AB=AE=DE,∴∠ABE=AEB=EAD=36°,∴∠AME=180°﹣EAMAEM=108°,故①正確;

∵∠AEN=108°﹣36°=72°,ANE=36°+36°=72°,∴∠AEN=ANEAE=AN,同理DE=DMAE=DM∵∠EAD=AEM=ADE=36°,∴△AEM∽△ADE

=,AE2=AMAD;

AN2=AMAD;故②正確;

AE2=AMAD,22=(2MN)(4MN),解得MN=3故③正確;

在正五邊形ABCDE中,∵BE=CE=AD=1+,BH=BC=1,EH==SEBC=BCEH=×2×=,故④錯誤;

故答案為:①②③

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD,∠EAF=45°,連接對角線BDAEMAFN,DN=1,BM=2,那么MN=_____.證明DN2+BM2=MN2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中:(1)正整數(shù)和負整數(shù)統(tǒng)稱為整數(shù);(2)把能夠寫成分數(shù)形式 (m、n是整數(shù),n≠0)的數(shù)叫做有理數(shù);(3)異號兩數(shù)相加,當絕對值不等時,取絕對值較大加數(shù)的符號,并用較大的加數(shù)減去較小的加數(shù);(4)0是整數(shù),但不是整式.正確的個數(shù)有 ( )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點OBEAC,AEBD,OEAB交于點F.

1)試判斷四邊形AEBO的形狀,并說明理由;

2)若OE=10AC=16,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道平行四邊形有很多性質,現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結論.

(發(fā)現(xiàn)與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB`C,連結B`D.

結論1:△AB`C與ABCD重疊部分的圖形是等腰三角形;結論2:B`D∥AC;

1)請證明結論1和結論2;

(應用與探究)

2)在ABCD中,已知BC=2,∠B=45°,將△ABC沿AC翻折至△AB`C,連接B`D若以A、C、D、B`為頂點的四邊形是正方形,求AC的長(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明是個愛動腦筋的同學,在發(fā)現(xiàn)教材中的用方框在日歷中移動的規(guī)律后,突發(fā)奇想,將連續(xù)的得數(shù)2,4,6,8,,排成如圖形式:并用一個十字形框架框住其中的五個數(shù),請你仔細觀察十字形框架中的數(shù)字的規(guī)律,并回答下列問題:

1)請你選擇十字框中你喜歡的任意位置的一個數(shù),將其設為x,并用含x的代數(shù)式表示十字框中五個數(shù)的和.

2)若將十字框上下左右移動,可框住另外的五個數(shù),試間:十字框能否框住和等于2015的五個數(shù),如能,請求出這五個數(shù);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校在開展“書香校園”活動期間,對學生課外閱讀的喜好進行抽樣調查(每人只選一種書籍),將調查結果繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據圖中的信息,解答下列問題:

(1)這次調查的學生人數(shù)為  人,扇形統(tǒng)計圖中m的值為  ;

(2)補全條形統(tǒng)計圖;

(3)如果這所學校要添置學生課外閱讀的書籍1500冊,請你估計“科普”類書籍應添置多少冊比較合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲口袋中裝有兩個相同的小球,它們的標號分別為2和7,乙口袋中裝有兩個相同的小球,它們的標號分別為4和5,丙口袋中裝有三個相同的小球,它們的標號分別為3,8,9.從這3個口袋中各隨機地取出1個小球.

1求取出的3個小球的標號全是奇數(shù)的概率是多少?

2以取出的三個小球的標號分別表示三條線段的長度,求這些線段能構成三角形的概率.

查看答案和解析>>

同步練習冊答案