【題目】如圖,是住宅區(qū)內(nèi)的兩幢樓,它們的高,兩樓間的距離,現(xiàn)需了解甲樓對乙樓的采光的影響情況.

1)當太陽光與水平線的夾角為角時,求甲樓的影子在乙樓上有多高(答案可用根號表示);

2)若要甲樓的影子剛好不落在乙樓的墻上,此時太陽與水平線的夾角為多少度?

【答案】1;(2)當太陽光與水平線夾角為時,甲樓的影子剛才不落在乙樓的墻上.

【解析】

1)如圖所示作出輔助線,在中運用勾股定理列出方程解答即可;

2)當甲幢樓的影子剛好落在點處時,可得為等腰三角形,從而得出太陽光與水平線夾角.

1)如圖,延長,作,交

中,∵,,

,則,根據(jù)勾股定理知,,

,∴,(負值舍去),

因此,

2)當甲幢樓的影子剛好落在點處時,為等腰三角形,

因此,當太陽光與水平線夾角為時,甲樓的影子剛才不落在乙樓的墻上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形為平行四邊形,平分于點,過點,交于點,連接

1)求證:平分;

2)若,四邊形與四邊形相似,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在矩形ABCD中,AB1BC,P為邊AD上任意一點,連接PB,則PB+PD的最小值為( 。

A.B.2C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中,為一元二次方程的是(

A. x=2y-3 B. +1=3 C. x2+3x-1=x2+1 D. x2=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一輪船以30km/h的速度由西向東航行,在途中接到臺風警報,臺風中心正以20km/h的速度由南向北移動.已知距臺風中心200km的區(qū)域(包括邊界)都屬于受臺風影響區(qū).當輪船接到臺風警報時,測得BC=500km,BA=300km

問:(1)如果輪船不改變航向,輪船會不會進入臺風影響區(qū)?

(2)若輪船進入臺風影響區(qū),那么從接到警報開始,經(jīng)多少時間就進入臺風影響區(qū)?(結(jié)果精確到0.01h)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD邊長為3,點EAB邊上且BE=1,點P,Q分別是邊BC,CD的動點(均不與頂點重合),當四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關系如圖所示.

1)求甲、乙兩車行駛的速度VV.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象交于A-1,3),B3,)兩點,過點AACx軸于點C,過點BBDx軸于點D

1)求一次函數(shù)及反比例函數(shù)的解析式;

2)若點P在直線上,且SACP2SBDP,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知定義

在一次數(shù)學活動課中,老師給出這樣一個新定義:如果三角形的兩個內(nèi)角αβ滿足α+2β90°,那么我們稱這樣的三角形為類直角三角形

嘗試運用

1)如圖1,在RtABC中,∠C90°,BC3,AB5,BD是∠ABC的平分線.

①證明ABD類直角三角形;

②試問在邊AC上是否存在點E(異于點D),使得ABE也是類直角三角形?若存在,請求出CE的長;若不存在,請說明理由.

類比拓展

2)如圖2,ABD內(nèi)接于⊙O,直徑AB10,弦AD6,點E是弧AD上一動點(包括端點AD),延長BE至點C,連結(jié)AC,且∠CAD=∠AOD,當ABC類直角三角形時,求AC的長.

查看答案和解析>>

同步練習冊答案